jiangjiajun 5 жил өмнө
parent
commit
e7cfe01b20
100 өөрчлөгдсөн 1149 нэмэгдсэн , 1535 устгасан
  1. 0 68
      docs/FAQ.md
  2. 142 0
      docs/README.md
  3. 0 38
      docs/apis/datasets/classification.md
  4. 0 42
      docs/apis/datasets/dataset_convert.md
  5. 0 93
      docs/apis/datasets/detection.md
  6. 0 32
      docs/apis/datasets/index.rst
  7. 0 42
      docs/apis/datasets/semantic_segmentation.md
  8. 0 38
      docs/apis/deploy.md
  9. 3 3
      docs/apis/index.rst
  10. 58 0
      docs/apis/interpret.md
  11. 3 2
      docs/apis/load_model.md
  12. 34 120
      docs/apis/models/classification.md
  13. 11 11
      docs/apis/models/detection.md
  14. 2 2
      docs/apis/models/index.rst
  15. 6 6
      docs/apis/models/instance_segmentation.md
  16. 18 209
      docs/apis/models/semantic_segmentation.md
  17. 5 3
      docs/apis/slim.md
  18. 50 50
      docs/apis/transforms/cls_transforms.md
  19. 39 34
      docs/apis/transforms/det_transforms.md
  20. 1 1
      docs/apis/transforms/index.rst
  21. 23 21
      docs/apis/transforms/seg_transforms.md
  22. 40 87
      docs/apis/visualize.md
  23. 1 1
      docs/appendix/anaconda_install.md
  24. 0 367
      docs/appendix/datasets.md
  25. 0 28
      docs/appendix/how_to_convert_dataset.md
  26. 0 0
      docs/appendix/images/anaconda_windows.png
  27. 0 0
      docs/appendix/images/cls_eval.png
  28. 0 0
      docs/appendix/images/cls_train.png
  29. 0 0
      docs/appendix/images/faster_eval.png
  30. 0 0
      docs/appendix/images/faster_train.png
  31. 0 0
      docs/appendix/images/lime.png
  32. BIN
      docs/appendix/images/mask_eval.png
  33. 0 0
      docs/appendix/images/mask_train.png
  34. BIN
      docs/appendix/images/normlime.png
  35. 0 0
      docs/appendix/images/seg_eval.png
  36. 0 0
      docs/appendix/images/seg_train.png
  37. 0 0
      docs/appendix/images/voc_eval.png
  38. 0 0
      docs/appendix/images/yolo_train.png
  39. 0 2
      docs/appendix/index.rst
  40. 5 5
      docs/appendix/interpret.md
  41. 12 12
      docs/appendix/metrics.md
  42. 50 34
      docs/appendix/parameters.md
  43. 34 0
      docs/change_log.md
  44. 1 2
      docs/conf.py
  45. 0 132
      docs/cv_solutions.md
  46. 36 0
      docs/data/annotation.md
  47. 75 0
      docs/data/format/classification.md
  48. 73 0
      docs/data/format/detection.md
  49. 12 0
      docs/data/format/index.rst
  50. 44 0
      docs/data/format/instance_segmentation.md
  51. 75 0
      docs/data/format/segmentation.md
  52. 10 0
      docs/data/index.rst
  53. 0 2
      docs/datasets.md
  54. 17 0
      docs/deploy/export_model.md
  55. 0 0
      docs/deploy/images/encrypt.png
  56. 0 0
      docs/deploy/images/encryption_process.png
  57. 0 0
      docs/deploy/images/vs2019_step1.png
  58. 0 0
      docs/deploy/images/vs2019_step2.png
  59. 0 0
      docs/deploy/images/vs2019_step3.png
  60. 0 0
      docs/deploy/images/vs2019_step4.png
  61. 0 0
      docs/deploy/images/vs2019_step5.png
  62. 0 0
      docs/deploy/images/vs2019_step6.png
  63. 0 0
      docs/deploy/images/vs2019_step7.png
  64. 0 0
      docs/deploy/images/vs2019_step_encryption.png
  65. 13 0
      docs/deploy/index.rst
  66. 145 0
      docs/deploy/nvidia-jetson.md
  67. 11 0
      docs/deploy/openvino/index.rst
  68. 1 0
      docs/deploy/openvino/intel_movidius.md
  69. 1 0
      docs/deploy/openvino/linux.md
  70. 1 0
      docs/deploy/openvino/windows.md
  71. 1 0
      docs/deploy/paddlelite/android.md
  72. 10 0
      docs/deploy/paddlelite/index.rst
  73. 3 1
      docs/deploy/paddlelite/slim/index.rst
  74. 1 0
      docs/deploy/paddlelite/slim/prune.md
  75. 1 0
      docs/deploy/paddlelite/slim/quant.md
  76. 10 0
      docs/deploy/server/cpp/index.rst
  77. 12 11
      docs/deploy/server/cpp/linux.md
  78. 9 8
      docs/deploy/server/cpp/windows.md
  79. 8 7
      docs/deploy/server/encryption.md
  80. 11 0
      docs/deploy/server/index.rst
  81. 2 17
      docs/deploy/server/python.md
  82. 0 0
      docs/deploy/upgrade_version.md
  83. 5 0
      docs/examples/human_segmentation/index.rst
  84. 12 0
      docs/examples/index.rst
  85. 5 0
      docs/examples/meter_reading/index.rst
  86. 5 0
      docs/examples/remote_sensing/index.rst
  87. 1 0
      docs/examples/solutions.md
  88. 1 4
      docs/gui/index.rst
  89. BIN
      docs/images/00_loaddata.png
  90. BIN
      docs/images/01_datasplit.png
  91. BIN
      docs/images/02_newproject.png
  92. BIN
      docs/images/03_choosedata.png
  93. BIN
      docs/images/04_parameter.png
  94. BIN
      docs/images/05_train.png
  95. BIN
      docs/images/06_VisualDL.png
  96. BIN
      docs/images/07_evaluate.png
  97. BIN
      docs/images/08_deploy.png
  98. BIN
      docs/images/PaddleX-Pipe-Line.png
  99. BIN
      docs/images/QQGroup.jpeg
  100. BIN
      docs/images/garbage.bmp

+ 0 - 68
docs/FAQ.md

@@ -1,68 +0,0 @@
-# 常见问题
-
-## 1. 训练参数如何调整
-> 参考[参数调整文档](appendix/parameters.md)
-
-## 2. 训练过程因显存不够出错
-
-> 通过使用在终端`nvidia-smi`命令,查看GPU是否被其它任务占用,尝试清除其它任务;  
-> 调低训练时的`batch_size`参数,从而降低显存的要求,注意需等比例调低`learning_rate`等参数;
-> 选用更小的模型或backbone。
-
-## 3. 是否有更小的模型,适用于更低配置的设备上运行
-> 可以使用模型裁剪,参考文档[模型裁剪使用教程](slim/prune.md),通过调整裁剪参数,可以控制模型裁剪后的大小,在实际实验中,如VOC检测数据,使用yolov3-mobilenet,原模型大小为XXM,裁剪后为XX M,精度基本保持不变
-
-## 4. 如何配置训练时GPU的卡数
-> 通过在终端export环境变量,或在Python代码中设置,可参考文档[CPU/多卡GPU训练](appendix/gpu_configure.md)
-
-## 5. 想将之前训练的模型参数上继续训练
-> 在训练调用`train`接口时,将`pretrain_weights`设为之前的模型保存路径即可
-
-
-## 6. PaddleX保存的模型分为正常训练过程中产生、裁剪训练产生、导出为部署模型和量化保存这么多种,有什么差别,怎么区分
-
-**不同模型的功能差异**
-
->1.正常模型训练保存  
->
->>模型在正常训练过程,每间隔n个epoch保存的模型目录,模型可作为预训练模型参数,可使用PaddleX加载预测、或导出部署模型  
-
->2.裁剪训练保存  
->
->>模型在裁剪训练过程,每间隔n个epoch保存的模型目录,模型不可作为预训练模型参数,可使用PaddleX加载预测、或导出部署模型  
-
->3.导出部署模型  
->
->>为了模型在服务端部署,导出的模型目录,不可作为预训练模型参数,可使用PaddleX加载预测
-
->4.量化保存模型  
->
->>为了提升模型预测速度,将模型参数进行量化保存的模型目录,模型不可作为预训练模型参数,可使用PaddleX加载预测  
-
-**区分方法**  
->> 通过模型目录下model.yml文件中`status`字段来区别不同的模型类型, 'Normal'、'Prune'、'Infer'、'Quant'分别表示正常模型训练保存、裁剪训练保存、导出的部署模型、量化保存模型
-
-
-## 7. 模型训练需要太久时间,或者训练速度太慢,怎么提速
-> 1.模型训练速度与用户选定的模型大小,和设定的`batch_size`相关,模型大小可直接参考[模型库](model_zoo.md)中的指标,一般而言,模型越大,训练速度就越慢;  
-
-> 2.在模型速度之外,模型训练完成所需的时间又与用户设定的`num_epochs`迭代轮数相关,用户可以通过观察模型在验证集上的指标来决定是否提示结束掉训练进程(训练时设定`save_interval_epochs`参数,训练过程会每间隔`save_interval_epochs`轮数在验证集上计算指标,并保存模型);  
-
-## 8. 如何设定迭代的轮数
-> 1. 用户自行训练时,如不确定迭代的轮数,可以将轮数设高一些,同时注意设置`save_interval_epochs`,这样模型迭代每间隔相应轮数就会在验证集上进行评估和保存,可以根据不同轮数模型在验证集上的评估指标,判断模型是否已经收敛,若模型已收敛,可以自行结束训练进程
->
-## 9. 只有CPU,没有GPU,如何提升训练速度
-> 当没有GPU时,可以根据自己的CPU配置,选择是否使用多CPU进行训练,具体配置方式可以参考文档[多卡CPU/GPU训练](appendix/gpu_configure.md)
->
-## 10. 电脑不能联网,训练时因为下载预训练模型失败,如何解决
-> 可以预先通过其它方式准备好预训练模型,然后训练时自定义`pretrain_weights`即可,可参考文档[无联网模型训练](how_to_offline_run.md)
-
-## 11. 每次训练新的模型,都需要重新下载预训练模型,怎样可以下载一次就搞定
-> 1.可以按照9的方式来解决这个问题  
-> 2.每次训练前都设定`paddlex.pretrain_dir`路径,如设定`paddlex.pretrain_dir='/usrname/paddlex`,如此下载完的预训练模型会存放至`/usrname/paddlex`目录下,而已经下载在该目录的模型也不会再次重复下载
-
-## 12. PaddleX GUI启动时提示"Failed to execute script PaddleX",如何解决?
-> 1. 请检查目标机器上PaddleX程序所在路径是否包含中文。目前暂不支持中文路径,请尝试将程序移动到英文目录。
-> 2. 如果您的系统是Windows 7或者Windows Server 2012时,原因是缺少MFPlat.DLL/MF.dll/MFReadWrite.dll等OpenCV依赖的DLL,请按如下方式安装桌面体验:通过“我的电脑”-->“属性”-->"管理"打开服务器管理器,点击右上角“管理”选择“添加角色和功能”。点击“服务器选择”-->“功能”,拖动滚动条到最下端,点开“用户界面和基础结构”,勾选“桌面体验”后点击“安装”,等安装完成尝试再次运行PaddleX。
-> 3. 请检查目标机器上是否有其他的PaddleX程序或者进程在运行中,如有请退出或者重启机器看是否解决
-> 4. 请确认运行程序的用户是否有管理员权限,如非管理员权限用户请尝试使用管理员运行看是否成功

+ 142 - 0
docs/README.md

@@ -0,0 +1,142 @@
+# 数据集读取
+
+## paddlex.datasets.ImageNet
+> **用于图像分类模型**  
+```
+paddlex.datasets.ImageNet(data_dir, file_list, label_list, transforms=None, num_workers=‘auto’, buffer_size=100, parallel_method='thread', shuffle=False)
+```
+读取ImageNet格式的分类数据集,并对样本进行相应的处理。ImageNet数据集格式的介绍可查看文档:[数据集格式说明](../data/format/index.html)  
+
+示例:[代码文件](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/classification/mobilenetv2.py#L25)
+
+> **参数**
+
+> > * **data_dir** (str): 数据集所在的目录路径。  
+> > * **file_list** (str): 描述数据集图片文件和类别id的文件路径(文本内每行路径为相对`data_dir`的相对路径)。  
+> > * **label_list** (str): 描述数据集包含的类别信息文件路径。  
+> > * **transforms** (paddlex.cls.transforms): 数据集中每个样本的预处理/增强算子,详见[paddlex.cls.transforms](./transforms/cls_transforms.md)。  
+> > * **num_workers** (int|str):数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的一半。  
+> > * **buffer_size** (int): 数据集中样本在预处理过程中队列的缓存长度,以样本数为单位。默认为100。  
+> > * **parallel_method** (str): 数据集中样本在预处理过程中并行处理的方式,支持'thread'线程和'process'进程两种方式。默认为'process'(Windows和Mac下会强制使用thread,该参数无效)。  
+> > * **shuffle** (bool): 是否需要对数据集中样本打乱顺序。默认为False。  
+
+## paddlex.datasets.PascalVOC
+> **用于目标检测模型**  
+```
+paddlex.datasets.PascalVOC(data_dir, file_list, label_list, transforms=None, num_workers=‘auto’, buffer_size=100, parallel_method='thread', shuffle=False)
+```
+
+> 读取PascalVOC格式的检测数据集,并对样本进行相应的处理。PascalVOC数据集格式的介绍可查看文档:[数据集格式说明](../data/format/index.html)  
+
+> 示例:[代码文件](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/detection/yolov3_darknet53.py#L29)
+
+> **参数**
+
+> > * **data_dir** (str): 数据集所在的目录路径。  
+> > * **file_list** (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对`data_dir`的相对路径)。
+> > * **label_list** (str): 描述数据集包含的类别信息文件路径。  
+> > * **transforms** (paddlex.det.transforms): 数据集中每个样本的预处理/增强算子,详见[paddlex.det.transforms](./transforms/det_transforms.md)。  
+> > * **num_workers** (int|str):数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的一半。
+> > * **buffer_size** (int): 数据集中样本在预处理过程中队列的缓存长度,以样本数为单位。默认为100。  
+> > * **parallel_method** (str): 数据集中样本在预处理过程中并行处理的方式,支持'thread'线程和'process'进程两种方式。默认为'process'(Windows和Mac下会强制使用thread,该参数无效)。  
+> > * **shuffle** (bool): 是否需要对数据集中样本打乱顺序。默认为False。  
+
+## paddlex.datasets.MSCOCO
+> **用于实例分割/目标检测模型**  
+```
+paddlex.datasets.MSCOCO(data_dir, ann_file, transforms=None, num_workers='auto', buffer_size=100, parallel_method='thread', shuffle=False)
+```
+
+> 读取MSCOCO格式的检测数据集,并对样本进行相应的处理,该格式的数据集同样可以应用到实例分割模型的训练中。MSCOCO数据集格式的介绍可查看文档:[数据集格式说明](../data/format/index.html)  
+
+> 示例:[代码文件](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/detection/mask_rcnn_r50_fpn.py#L27)
+
+> **参数**
+
+> > * **data_dir** (str): 数据集所在的目录路径。  
+> > * **ann_file** (str): 数据集的标注文件,为一个独立的json格式文件。
+> > * **transforms** (paddlex.det.transforms): 数据集中每个样本的预处理/增强算子,详见[paddlex.det.transforms](./transforms/det_transforms.md)。  
+> > * **num_workers** (int|str):数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的一半。  
+> > * **buffer_size** (int): 数据集中样本在预处理过程中队列的缓存长度,以样本数为单位。默认为100。  
+> > * **parallel_method** (str): 数据集中样本在预处理过程中并行处理的方式,支持'thread'线程和'process'进程两种方式。默认为'process'(Windows和Mac下会强制使用thread,该参数无效)。  
+> > * **shuffle** (bool): 是否需要对数据集中样本打乱顺序。默认为False。  
+
+## paddlex.datasets.SegDataset
+> **用于语义分割模型**  
+```
+paddlex.datasets.SegDataset(data_dir, file_list, label_list, transforms=None, num_workers='auto', buffer_size=100, parallel_method='thread', shuffle=False)
+```
+
+> 读取语义分割任务数据集,并对样本进行相应的处理。语义分割任务数据集格式的介绍可查看文档:[数据集格式说明](../data/format/index.html)  
+
+> 示例:[代码文件](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/segmentation/unet.py#L27)
+
+> **参数**
+
+> > * **data_dir** (str): 数据集所在的目录路径。  
+> > * **file_list** (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对`data_dir`的相对路径)。
+> > * **label_list** (str): 描述数据集包含的类别信息文件路径。  
+> > * **transforms** (paddlex.seg.transforms): 数据集中每个样本的预处理/增强算子,详见[paddlex.seg.transforms](./transforms/seg_transforms.md)。  
+> > * **num_workers** (int|str):数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的一半。
+> > * **buffer_size** (int): 数据集中样本在预处理过程中队列的缓存长度,以样本数为单位。默认为100。  
+> > * **parallel_method** (str): 数据集中样本在预处理过程中并行处理的方式,支持'thread'线程和'process'进程两种方式。默认为'process'(Windows和Mac下会强制使用thread,该参数无效)。  
+> > * **shuffle** (bool): 是否需要对数据集中样本打乱顺序。默认为False。
+
+## paddlex.datasets.EasyDataCls
+> **用于图像分类模型**  
+```
+paddlex.datasets.EasyDataCls(data_dir, file_list, label_list, transforms=None, num_workers='auto', buffer_size=100, parallel_method='thread', shuffle=False)
+```
+
+> 读取EasyData平台标注图像分类数据集,并对样本进行相应的处理。
+
+> **参数**
+
+> > * **data_dir** (str): 数据集所在的目录路径。  
+> > * **file_list** (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对`data_dir`的相对路径)。
+> > * **label_list** (str): 描述数据集包含的类别信息文件路径。  
+> > * **transforms** (paddlex.seg.transforms): 数据集中每个样本的预处理/增强算子,详见[paddlex.cls.transforms](./transforms/cls_transforms.md)。  
+> > * **num_workers** (int|str):数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的一半。
+> > * **buffer_size** (int): 数据集中样本在预处理过程中队列的缓存长度,以样本数为单位。默认为100。  
+> > * **parallel_method** (str): 数据集中样本在预处理过程中并行处理的方式,支持'thread'线程和'process'进程两种方式。默认为'process'(Windows和Mac下会强制使用thread,该参数无效)。  
+> > * **shuffle** (bool): 是否需要对数据集中样本打乱顺序。默认为False。
+
+## paddlex.datasets.EasyDataDet
+> 用于**目标检测/实例分割模型**  
+```
+paddlex.datasets.EasyDataDet(data_dir, file_list, label_list, transforms=None, num_workers=‘auto’, buffer_size=100, parallel_method='thread', shuffle=False)
+```
+
+> 读取EasyData目标检测/实例分割格式数据集,并对样本进行相应的处理,该格式的数据集同样可以应用到实例分割模型的训练中。
+
+
+> **参数**
+
+> > * **data_dir** (str): 数据集所在的目录路径。  
+> > * **file_list** (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对`data_dir`的相对路径)。
+> > * **label_list** (str): 描述数据集包含的类别信息文件路径。  
+> > * **transforms** (paddlex.det.transforms): 数据集中每个样本的预处理/增强算子,详见[paddlex.det.transforms](./transforms/det_transforms.md)。  
+> > * **num_workers** (int|str):数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的一半。
+> > * **buffer_size** (int): 数据集中样本在预处理过程中队列的缓存长度,以样本数为单位。默认为100。  
+> > * **parallel_method** (str): 数据集中样本在预处理过程中并行处理的方式,支持'thread'线程和'process'进程两种方式。默认为'process'(Windows和Mac下会强制使用thread,该参数无效)。  
+> > * **shuffle** (bool): 是否需要对数据集中样本打乱顺序。默认为False。
+
+## paddlex.datasets.EasyDataSeg
+> **用于语义分割模型**  
+```
+paddlex.datasets.EasyDataSeg(data_dir, file_list, label_list, transforms=None, num_workers='auto', buffer_size=100, parallel_method='thread', shuffle=False)
+```
+
+> 读取EasyData语义分割任务数据集,并对样本进行相应的处理。
+
+
+> **参数**
+
+> > * **data_dir** (str): 数据集所在的目录路径。  
+> > * **file_list** (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对`data_dir`的相对路径)。
+> > * **label_list** (str): 描述数据集包含的类别信息文件路径。  
+> > * **transforms** (paddlex.seg.transforms): 数据集中每个样本的预处理/增强算子,详见[paddlex.seg.transforms](./transforms/seg_transforms.md)。  
+> > * **num_workers** (int|str):数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的一半。
+> > * **buffer_size** (int): 数据集中样本在预处理过程中队列的缓存长度,以样本数为单位。默认为100。  
+> > * **parallel_method** (str): 数据集中样本在预处理过程中并行处理的方式,支持'thread'线程和'process'进程两种方式。默认为'process'(Windows和Mac下会强制使用thread,该参数无效)。  
+> > * **shuffle** (bool): 是否需要对数据集中样本打乱顺序。默认为False。

+ 0 - 38
docs/apis/datasets/classification.md

@@ -1,38 +0,0 @@
-# 图像分类数据集
-
-## ImageNet类
-```
-paddlex.datasets.ImageNet(data_dir, file_list, label_list, transforms=None, num_workers=‘auto’, buffer_size=100, parallel_method='thread', shuffle=False)
-```
-读取ImageNet格式的分类数据集,并对样本进行相应的处理。ImageNet数据集格式的介绍可查看文档:[数据集格式说明](../datasets.md)  
-
-示例:[代码文件](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/classification/mobilenetv2.py#L25)
-
-> **参数**
-
-> > * **data_dir** (str): 数据集所在的目录路径。  
-> > * **file_list** (str): 描述数据集图片文件和类别id的文件路径(文本内每行路径为相对`data_dir`的相对路径)。  
-> > * **label_list** (str): 描述数据集包含的类别信息文件路径。  
-> > * **transforms** (paddlex.cls.transforms): 数据集中每个样本的预处理/增强算子,详见[paddlex.cls.transforms](./transforms/cls_transforms.md)。  
-> > * **num_workers** (int|str):数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的一半。  
-> > * **buffer_size** (int): 数据集中样本在预处理过程中队列的缓存长度,以样本数为单位。默认为100。  
-> > * **parallel_method** (str): 数据集中样本在预处理过程中并行处理的方式,支持'thread'线程和'process'进程两种方式。默认为'process'(Windows和Mac下会强制使用thread,该参数无效)。  
-> > * **shuffle** (bool): 是否需要对数据集中样本打乱顺序。默认为False。  
-
-## EasyDataCls类
-```
-paddlex.datasets.EasyDatasetCls(data_dir, file_list, label_list, transforms=None, num_workers='auto', buffer_size=100, parallel_method='thread', shuffle=False)
-```
-
-> 读取EasyData平台标注图像分类数据集,并对样本进行相应的处理。EasyData图像分类任务数据集格式的介绍可查看文档:[数据集格式说明](../datasets.md)。 
-
-> **参数**
-
-> > * **data_dir** (str): 数据集所在的目录路径。  
-> > * **file_list** (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对`data_dir`的相对路径)。
-> > * **label_list** (str): 描述数据集包含的类别信息文件路径。  
-> > * **transforms** (paddlex.seg.transforms): 数据集中每个样本的预处理/增强算子,详见[paddlex.cls.transforms](./transforms/cls_transforms.md)。  
-> > * **num_workers** (int|str):数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的一半。
-> > * **buffer_size** (int): 数据集中样本在预处理过程中队列的缓存长度,以样本数为单位。默认为100。  
-> > * **parallel_method** (str): 数据集中样本在预处理过程中并行处理的方式,支持'thread'线程和'process'进程两种方式。默认为'process'(Windows和Mac下会强制使用thread,该参数无效)。  
-> > * **shuffle** (bool): 是否需要对数据集中样本打乱顺序。默认为False。

+ 0 - 42
docs/apis/datasets/dataset_convert.md

@@ -1,42 +0,0 @@
-# 数据集转换
-## labelme2voc
-```python
-pdx.tools.labelme2voc(image_dir, json_dir, dataset_save_dir)
-```
-将LabelMe标注的数据集转换为VOC数据集。
-
-> **参数**
-> > * **image_dir** (str): 图像文件存放的路径。
-> > * **json_dir** (str): 与每张图像对应的json文件的存放路径。
-> > * **dataset_save_dir** (str): 转换后数据集存放路径。
-
-## 其它数据集转换
-### easydata2imagenet
-```python
-pdx.tools.easydata2imagenet(image_dir, json_dir, dataset_save_dir)
-```
-### easydata2voc
-```python
-pdx.tools.easydata2voc(image_dir, json_dir, dataset_save_dir)
-```
-### easydata2coco
-```python
-pdx.tools.easydata2coco(image_dir, json_dir, dataset_save_dir)
-```
-### easydata2seg
-```python
-pdx.tools.easydata2seg(image_dir, json_dir, dataset_save_dir)
-```
-### labelme2coco
-```python
-pdx.tools.labelme2coco(image_dir, json_dir, dataset_save_dir)
-```
-### labelme2seg
-```python
-pdx.tools.labelme2seg(image_dir, json_dir, dataset_save_dir)
-```
-### jingling2seg
-```python
-pdx.tools.jingling2seg(image_dir, json_dir, dataset_save_dir)
-```
-

+ 0 - 93
docs/apis/datasets/detection.md

@@ -1,93 +0,0 @@
-# 检测和实例分割数据集
-
-## VOCDetection类
-
-```
-paddlex.datasets.VOCDetection(data_dir, file_list, label_list, transforms=None, num_workers=‘auto’, buffer_size=100, parallel_method='thread', shuffle=False)
-```
-
-> 仅用于**目标检测**。读取PascalVOC格式的检测数据集,并对样本进行相应的处理。PascalVOC数据集格式的介绍可查看文档:[数据集格式说明](../datasets.md)  
-
-> 示例:[代码文件](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/detection/yolov3_darknet53.py#L29)
-
-> **参数**
-
-> > * **data_dir** (str): 数据集所在的目录路径。  
-> > * **file_list** (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对`data_dir`的相对路径)。
-> > * **label_list** (str): 描述数据集包含的类别信息文件路径。  
-> > * **transforms** (paddlex.det.transforms): 数据集中每个样本的预处理/增强算子,详见[paddlex.det.transforms](./transforms/det_transforms.md)。  
-> > * **num_workers** (int|str):数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的一半。
-> > * **buffer_size** (int): 数据集中样本在预处理过程中队列的缓存长度,以样本数为单位。默认为100。  
-> > * **parallel_method** (str): 数据集中样本在预处理过程中并行处理的方式,支持'thread'线程和'process'进程两种方式。默认为'process'(Windows和Mac下会强制使用thread,该参数无效)。  
-> > * **shuffle** (bool): 是否需要对数据集中样本打乱顺序。默认为False。  
-
-> 【可选】支持在训练过程中加入无目标真值的背景图片来减少背景误检,定义VOCDetection类后调用其成员函数`add_negative_samples`添加背景图片即可:
-> ```
-> add_negative_samples(image_dir)
-> ```
-> > 示例:[代码](../../tuning_strategy/detection/negatives_training.html#id4)
-
-> > **参数**
-
-> > > * **image_dir** (str): 背景图片所在的目录路径。
-
-## CocoDetection类
-
-```
-paddlex.datasets.CocoDetection(data_dir, ann_file, transforms=None, num_workers='auto', buffer_size=100, parallel_method='thread', shuffle=False)
-```
-
-> 用于**目标检测或实例分割**。读取MSCOCO格式的检测数据集,并对样本进行相应的处理,该格式的数据集同样可以应用到实例分割模型的训练中。MSCOCO数据集格式的介绍可查看文档:[数据集格式说明](../datasets.md)  
-
-> 示例:[代码文件](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/detection/mask_rcnn_r50_fpn.py#L27)
-
-> **参数**
-
-> > * **data_dir** (str): 数据集所在的目录路径。  
-> > * **ann_file** (str): 数据集的标注文件,为一个独立的json格式文件。
-> > * **transforms** (paddlex.det.transforms): 数据集中每个样本的预处理/增强算子,详见[paddlex.det.transforms](./transforms/det_transforms.md)。  
-> > * **num_workers** (int|str):数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的一半。  
-> > * **buffer_size** (int): 数据集中样本在预处理过程中队列的缓存长度,以样本数为单位。默认为100。  
-> > * **parallel_method** (str): 数据集中样本在预处理过程中并行处理的方式,支持'thread'线程和'process'进程两种方式。默认为'process'(Windows和Mac下会强制使用thread,该参数无效)。  
-> > * **shuffle** (bool): 是否需要对数据集中样本打乱顺序。默认为False。  
-
-> 【可选】支持在训练过程中加入无目标真值的背景图片来减少背景误检,定义CocoDetection类后调用其成员函数`add_negative_samples`添加背景图片即可:
-> ```
-> add_negative_samples(image_dir)
-> ```
-> > 示例:[代码](../../tuning_strategy/detection/negatives_training.html#id4)
-
-> > **参数**
-
-> > > * **image_dir** (str): 背景图片所在的目录路径。
-
-## EasyDataDet类
-
-```
-paddlex.datasets.EasyDataDet(data_dir, file_list, label_list, transforms=None, num_workers=‘auto’, buffer_size=100, parallel_method='thread', shuffle=False)
-```
-
-> 用于**目标检测或实例分割**。读取EasyData目标检测格式数据集,并对样本进行相应的处理,该格式的数据集同样可以应用到实例分割模型的训练中。EasyData目标检测或实例分割任务数据集格式的介绍可查看文档:[数据集格式说明](../datasets.md)  
-
-
-> **参数**
-
-> > * **data_dir** (str): 数据集所在的目录路径。  
-> > * **file_list** (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对`data_dir`的相对路径)。
-> > * **label_list** (str): 描述数据集包含的类别信息文件路径。  
-> > * **transforms** (paddlex.det.transforms): 数据集中每个样本的预处理/增强算子,详见[paddlex.det.transforms](./transforms/det_transforms.md)。  
-> > * **num_workers** (int|str):数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的一半。
-> > * **buffer_size** (int): 数据集中样本在预处理过程中队列的缓存长度,以样本数为单位。默认为100。  
-> > * **parallel_method** (str): 数据集中样本在预处理过程中并行处理的方式,支持'thread'线程和'process'进程两种方式。默认为'process'(Windows和Mac下会强制使用thread,该参数无效)。  
-> > * **shuffle** (bool): 是否需要对数据集中样本打乱顺序。默认为False。
-
-
-> 【可选】支持在训练过程中加入无目标真值的背景图片来减少背景误检,定义EasyDataDet类后调用其成员函数`add_negative_samples`添加背景图片即可:
-> ```
-> add_negative_samples(image_dir)
-> ```
-> > 示例:[代码](../../tuning_strategy/detection/negatives_training.html#id4)
-
-> > **参数**
-
-> > > * **image_dir** (str): 背景图片所在的目录路径。

+ 0 - 32
docs/apis/datasets/index.rst

@@ -1,32 +0,0 @@
-数据集-datasets
-============================
-
-PaddleX目前支持主流的CV数据集格式和 `EasyData <https://ai.baidu.com/easydata/>`_ 数据标注平台的标注数据格式,此外PaddleX也提升了数据格式转换工具API,支持包括LabelMe,精灵标注助手和EasyData平台数据格式的转换,可以参考PaddleX的tools API文档。
-
-下表为各数据集格式与相应任务的对应关系,
-
-+------------------------+------------+----------+----------+----------+
-| 数据集格式             | 图像分类   | 目标检测 | 实例分割 | 语义分割 |
-+========================+============+==========+==========+==========+
-| ImageNet               | √          | -        | -        | -        |
-+------------------------+------------+----------+----------+----------+
-| VOCDetection           | -          | √        | -        | -        |
-+------------------------+------------+----------+----------+----------+
-| CocoDetection          | -          | √        | √        | -        |
-+------------------------+------------+----------+----------+----------+
-| SegDataset             | -          | -        | -        | √        |
-+------------------------+------------+----------+----------+----------+
-| EasyDataCls            | √          | -        | -        | -        |
-+------------------------+------------+----------+----------+----------+
-| EasyDataDet            | -          | √        | √        | -        |
-+------------------------+------------+----------+----------+----------+
-| EasyDataSeg            | -          | -        | -        | √        |
-+------------------------+------------+----------+----------+----------+
-
-.. toctree::
-   :maxdepth: 2
-
-   classification.md
-   detection.md
-   semantic_segmentation.md
-   dataset_convert.md

+ 0 - 42
docs/apis/datasets/semantic_segmentation.md

@@ -1,42 +0,0 @@
-# 语义分割数据集
-
-## SegDataset类
-
-```
-paddlex.datasets.SegDataset(data_dir, file_list, label_list, transforms=None, num_workers='auto', buffer_size=100, parallel_method='thread', shuffle=False)
-```
-
-> 读取语义分割任务数据集,并对样本进行相应的处理。语义分割任务数据集格式的介绍可查看文档:[数据集格式说明](../datasets.md)  
-
-> 示例:[代码文件](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/segmentation/unet.py#L27)
-
-> **参数**
-
-> > * **data_dir** (str): 数据集所在的目录路径。  
-> > * **file_list** (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对`data_dir`的相对路径)。
-> > * **label_list** (str): 描述数据集包含的类别信息文件路径。  
-> > * **transforms** (paddlex.seg.transforms): 数据集中每个样本的预处理/增强算子,详见[paddlex.seg.transforms](./transforms/seg_transforms.md)。  
-> > * **num_workers** (int|str):数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的一半。
-> > * **buffer_size** (int): 数据集中样本在预处理过程中队列的缓存长度,以样本数为单位。默认为100。  
-> > * **parallel_method** (str): 数据集中样本在预处理过程中并行处理的方式,支持'thread'线程和'process'进程两种方式。默认为'process'(Windows和Mac下会强制使用thread,该参数无效)。  
-> > * **shuffle** (bool): 是否需要对数据集中样本打乱顺序。默认为False。 
-
-## EasyDataSeg类
-
-```
-paddlex.datasets.EasyDataSeg(data_dir, file_list, label_list, transforms=None, num_workers='auto', buffer_size=100, parallel_method='thread', shuffle=False)
-```
-
-> 读取EasyData语义分割任务数据集,并对样本进行相应的处理。EasyData语义分割任务数据集格式的介绍可查看文档:[数据集格式说明](../datasets.md)  
-
-
-> **参数**
-
-> > * **data_dir** (str): 数据集所在的目录路径。  
-> > * **file_list** (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对`data_dir`的相对路径)。
-> > * **label_list** (str): 描述数据集包含的类别信息文件路径。  
-> > * **transforms** (paddlex.seg.transforms): 数据集中每个样本的预处理/增强算子,详见[paddlex.seg.transforms](./transforms/seg_transforms.md)。  
-> > * **num_workers** (int|str):数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的一半。
-> > * **buffer_size** (int): 数据集中样本在预处理过程中队列的缓存长度,以样本数为单位。默认为100。  
-> > * **parallel_method** (str): 数据集中样本在预处理过程中并行处理的方式,支持'thread'线程和'process'进程两种方式。默认为'process'(Windows和Mac下会强制使用thread,该参数无效)。  
-> > * **shuffle** (bool): 是否需要对数据集中样本打乱顺序。默认为False。 

+ 0 - 38
docs/apis/deploy.md

@@ -1,38 +0,0 @@
-# 预测部署-paddlex.deploy
-
-使用Paddle Inference进行高性能的Python预测部署。更多关于Paddle Inference信息请参考[Paddle Inference文档](https://paddle-inference.readthedocs.io/en/latest/#)
-
-## Predictor类
-
-```
-paddlex.deploy.Predictor(model_dir, use_gpu=False, gpu_id=0, use_mkl=False, use_trt=False, use_glog=False, memory_optimize=True)
-```
-
-> **参数**
-
-> > * **model_dir**: 训练过程中保存的模型路径, 注意需要使用导出的inference模型
-> > * **use_gpu**: 是否使用GPU进行预测
-> > * **gpu_id**: 使用的GPU序列号
-> > * **use_mkl**: 是否使用mkldnn加速库
-> > * **use_trt**: 是否使用TensorRT预测引擎
-> > * **use_glog**: 是否打印中间日志
-> > * **memory_optimize**: 是否优化内存使用
-
-> > ### 示例
-> >
-> > ```
-> > import paddlex
-> >
-> > model = paddlex.deploy.Predictor(model_dir, use_gpu=True)
-> > result = model.predict(image_file)
-> > ```
-
-### predict 接口
-> ```
-> predict(image, topk=1)
-> ```
-
-> **参数
-
-* **image(str|np.ndarray)**: 待预测的图片路径或np.ndarray,若为后者需注意为BGR格式
-* **topk(int)**: 图像分类时使用的参数,表示预测前topk个可能的分类

+ 3 - 3
docs/apis/index.rst

@@ -1,13 +1,13 @@
-PaddleX API说明文档
+API接口说明
 ============================
 
 .. toctree::
    :maxdepth: 2
 
    transforms/index.rst
-   datasets/index.rst
+   datasets.md
    models/index.rst
    slim.md
    load_model.md
    visualize.md
-   deploy.md
+   interpret.md

+ 58 - 0
docs/apis/interpret.md

@@ -0,0 +1,58 @@
+# 模型可解释性
+
+目前PaddleX支持对于图像分类的结果以可视化的方式进行解释,支持LIME和NormLIME两种可解释性算法。
+
+## paddlex.interpret.lime
+> **LIME可解释性结果可视化**  
+```
+paddlex.interpret.lime(img_file,
+                       model,
+                       num_samples=3000,
+                       batch_size=50,
+                       save_dir='./')
+```
+使用LIME算法将模型预测结果的可解释性可视化。  
+LIME表示与模型无关的局部可解释性,可以解释任何模型。LIME的思想是以输入样本为中心,在其附近的空间中进行随机采样,每个采样通过原模型得到新的输出,这样得到一系列的输入和对应的输出,LIME用一个简单的、可解释的模型(比如线性回归模型)来拟合这个映射关系,得到每个输入维度的权重,以此来解释模型。  
+
+**注意:** 可解释性结果可视化目前只支持分类模型。
+
+### 参数
+>* **img_file** (str): 预测图像路径。
+>* **model** (paddlex.cv.models): paddlex中的模型。
+>* **num_samples** (int): LIME用于学习线性模型的采样数,默认为3000。
+>* **batch_size** (int): 预测数据batch大小,默认为50。
+>* **save_dir** (str): 可解释性可视化结果(保存为png格式文件)和中间文件存储路径。
+
+
+### 使用示例
+> 对预测可解释性结果可视化的过程可参见[代码](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/interpret/lime.py)。
+
+
+## paddlex.interpret.normlime
+> **NormLIME可解释性结果可视化**  
+```
+paddlex.interpret.normlime(img_file,
+                           model,
+                           dataset=None,
+                           num_samples=3000,
+                           batch_size=50,
+                           save_dir='./',
+                           normlime_weights_file=None)
+```
+使用NormLIME算法将模型预测结果的可解释性可视化。
+NormLIME是利用一定数量的样本来出一个全局的解释。由于NormLIME计算量较大,此处采用一种简化的方式:使用一定数量的测试样本(目前默认使用所有测试样本),对每个样本进行特征提取,映射到同一个特征空间;然后以此特征做为输入,以模型输出做为输出,使用线性回归对其进行拟合,得到一个全局的输入和输出的关系。之后,对一测试样本进行解释时,使用NormLIME全局的解释,来对LIME的结果进行滤波,使最终的可视化结果更加稳定。
+
+**注意:** 可解释性结果可视化目前只支持分类模型。
+
+### 参数
+>* **img_file** (str): 预测图像路径。
+>* **model** (paddlex.cv.models): paddlex中的模型。
+>* **dataset** (paddlex.datasets): 数据集读取器,默认为None。
+>* **num_samples** (int): LIME用于学习线性模型的采样数,默认为3000。
+>* **batch_size** (int): 预测数据batch大小,默认为50。
+>* **save_dir** (str): 可解释性可视化结果(保存为png格式文件)和中间文件存储路径。
+>* **normlime_weights_file** (str): NormLIME初始化文件名,若不存在,则计算一次,保存于该路径;若存在,则直接载入。
+
+**注意:** dataset`读取的是一个数据集,该数据集不宜过大,否则计算时间会较长,但应包含所有类别的数据。NormLIME可解释性结果可视化目前只支持分类模型。
+### 使用示例
+> 对预测可解释性结果可视化的过程可参见[代码](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/interpret/normlime.py)。

+ 3 - 2
docs/apis/load_model.md

@@ -1,8 +1,9 @@
-# 模型加载-load_model
+# 模型加载
 
 PaddleX提供了统一的模型加载接口,支持加载PaddleX保存的模型,并在验证集上进行评估或对测试图片进行预测
 
-## 函数接口
+## paddlex.load_model
+> **加载PaddleX保存的模型**  
 
 ```
 paddlex.load_model(model_dir)

+ 34 - 120
docs/apis/models/classification.md

@@ -1,6 +1,6 @@
-# 图像分类
+# Image Classification
 
-## ResNet50
+## paddlex.cls.ResNet50
 
 ```python
 paddlex.cls.ResNet50(num_classes=1000)
@@ -12,7 +12,7 @@ paddlex.cls.ResNet50(num_classes=1000)
 
 > - **num_classes** (int): 类别数。默认为1000。  
 
-### train 训练接口
+### train
 
 ```python
 train(self, num_epochs, train_dataset, train_batch_size=64, eval_dataset=None, save_interval_epochs=1, log_interval_steps=2, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=0.025, warmup_steps=0, warmup_start_lr=0.0, lr_decay_epochs=[30, 60, 90], lr_decay_gamma=0.1, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05, early_stop=False, early_stop_patience=5, resume_checkpoint=None)
@@ -41,7 +41,7 @@ train(self, num_epochs, train_dataset, train_batch_size=64, eval_dataset=None, s
 > > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。
 > > - **resume_checkpoint** (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
 
-### evaluate 评估接口
+### evaluate
 
 ```python
 evaluate(self, eval_dataset, batch_size=1, epoch_id=None, return_details=False)
@@ -59,7 +59,7 @@ evaluate(self, eval_dataset, batch_size=1, epoch_id=None, return_details=False)
 > > - **dict**: 当return_details为False时,返回dict, 包含关键字:'acc1'、'acc5',分别表示最大值的accuracy、前5个最大值的accuracy。
 > > - **tuple** (metrics, eval_details): 当`return_details`为True时,增加返回dict,包含关键字:'true_labels'、'pred_scores',分别代表真实类别id、每个类别的预测得分。
 
-### predict 预测接口
+### predict
 
 ```python
 predict(self, img_file, transforms=None, topk=5)
@@ -69,7 +69,7 @@ predict(self, img_file, transforms=None, topk=5)
 
 > **参数**
 >
-> > - **img_file** (str): 预测图像路径。
+> > - **img_file** (str|np.ndarray): 预测图像路径或numpy数组(HWC排列,BGR格式)
 > > - **transforms** (paddlex.cls.transforms): 数据预处理操作。
 > > - **topk** (int): 预测时前k个最大值。
 
@@ -78,117 +78,31 @@ predict(self, img_file, transforms=None, topk=5)
 > > - **list**: 其中元素均为字典。字典的关键字为'category_id'、'category'、'score',
 > >       分别对应预测类别id、预测类别标签、预测得分。
 
-## 其它分类器类
-
-PaddleX提供了共计22种分类器,所有分类器均提供同`ResNet50`相同的训练`train`,评估`evaluate`和预测`predict`接口,各模型效果可参考[模型库](https://paddlex.readthedocs.io/zh_CN/latest/appendix/model_zoo.html)。
-
-### ResNet18
-```python
-paddlex.cls.ResNet18(num_classes=1000)
-```
-
-### ResNet34
-```python
-paddlex.cls.ResNet34(num_classes=1000)
-```
-
-
-### ResNet50
-```python
-paddlex.cls.ResNet50(num_classes=1000)
-```
-
-### ResNet50_vd
-```python
-paddlex.cls.ResNet50_vd(num_classes=1000)
-```
-
-### ResNet50_vd_ssld
-```python
-paddlex.cls.ResNet50_vd_ssld(num_classes=1000)
-```
-
-### ResNet101
-```python
-paddlex.cls.ResNet101(num_classes=1000)
-```
-
-### ResNet101_vd
-```python
-paddlex.cls.ResNet101_vdnum_classes=1000)
-```
-
-### ResNet101_vd_ssld
-```python
-paddlex.cls.ResNet101_vd_ssld(num_classes=1000)
-```
-
-### DarkNet53
-```python
-paddlex.cls.DarkNet53(num_classes=1000)
-```
-
-### MobileNetV1
-```python
-paddlex.cls.MobileNetV1(num_classes=1000)
-```
-
-### MobileNetV2
-```python
-paddlex.cls.MobileNetV2(num_classes=1000)
-```
-
-### MobileNetV3_small
-```python
-paddlex.cls.MobileNetV3_small(num_classes=1000)
-```
-
-### MobileNetV3_small_ssld
-```python
-paddlex.cls.MobileNetV3_small_ssld(num_classes=1000)
-```
-
-### MobileNetV3_large
-```python
-paddlex.cls.MobileNetV3_large(num_classes=1000)
-```
-
-### MobileNetV3_large_ssld
-```python
-paddlex.cls.MobileNetV3_large_ssld(num_classes=1000)
-```
-
-### Xception65
-```python
-paddlex.cls.Xception65(num_classes=1000)
-```
-
-### Xception71
-```python
-paddlex.cls.Xception71(num_classes=1000)
-```
-
-### ShuffleNetV2
-```python
-paddlex.cls.ShuffleNetV2(num_classes=1000)
-```
-
-### DenseNet121
-```python
-paddlex.cls.DenseNet121(num_classes=1000)
-```
-
-### DenseNet161
-```python
-paddlex.cls.DenseNet161(num_classes=1000)
-```
-
-### DenseNet201
-```python
-paddlex.cls.DenseNet201(num_classes=1000)
-```
-
-### HRNet_W18
-```python
-paddlex.cls.HRNet_W18(num_classes=1000)
-```
+## 其它分类模型
+
+PaddleX提供了共计22种分类模型,所有分类模型均提供同`ResNet50`相同的训练`train`,评估`evaluate`和预测`predict`接口,各模型效果可参考[模型库](https://paddlex.readthedocs.io/zh_CN/latest/appendix/model_zoo.html)。
+
+| 模型              | 接口                    |
+| :---------------- | :---------------------- |
+| ResNet18          | paddlex.cls.ResNet18(num_classes=1000) |
+| ResNet34          | paddlex.cls.ResNet34(num_classes=1000) |
+| ResNet50          | paddlex.cls.ResNet50(num_classes=1000) |
+| ResNet50_vd       | paddlex.cls.ResNet50_vd(num_classes=1000) |
+| ResNet50_vd_ssld    | paddlex.cls.ResNet50_vd_ssld(num_classes=1000) |
+| ResNet101          | paddlex.cls.ResNet101(num_classes=1000) |
+| ResNet101_vd        | paddlex.cls.ResNet101_vd(num_classes=1000) |
+| ResNet101_vd_ssld      | paddlex.cls.ResNet101_vd_ssld(num_classes=1000) |
+| DarkNet53      | paddlex.cls.DarkNet53(num_classes=1000) |
+| MoibileNetV1         | paddlex.cls.MobileNetV1(num_classes=1000) |
+| MobileNetV2       | paddlex.cls.MobileNetV2(num_classes=1000) |
+| MobileNetV3_small       | paddlex.cls.MobileNetV3_small(num_classes=1000) |
+| MobileNetV3_small_ssld  | paddlex.cls.MobileNetV3_small_ssld(num_classes=1000) |
+| MobileNetV3_large   | paddlex.cls.MobileNetV3_large(num_classes=1000) |
+| MobileNetV3_large_ssld | paddlex.cls.MobileNetV3_large_ssld(num_classes=1000) |
+| Xception65     | paddlex.cls.Xception65(num_classes=1000) |
+| Xception71     | paddlex.cls.Xception71(num_classes=1000) |
+| ShuffleNetV2     | paddlex.cls.ShuffleNetV2(num_classes=1000) |
+| DenseNet121      | paddlex.cls.DenseNet121(num_classes=1000) |
+| DenseNet161       | paddlex.cls.DenseNet161(num_classes=1000) |
+| DenseNet201       | paddlex.cls.DenseNet201(num_classes=1000) |
+| HRNet_W18       | paddlex.cls.HRNet_W18(num_classes=1000) |

+ 11 - 11
docs/apis/models/detection.md

@@ -1,6 +1,6 @@
-# 目标检测
+# Object Detection
 
-## YOLOv3
+## paddlex.det.YOLOv3
 
 ```python
 paddlex.det.YOLOv3(num_classes=80, backbone='MobileNetV1', anchors=None, anchor_masks=None, ignore_threshold=0.7, nms_score_threshold=0.01, nms_topk=1000, nms_keep_topk=100, nms_iou_threshold=0.45, label_smooth=False, train_random_shapes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608])
@@ -25,7 +25,7 @@ paddlex.det.YOLOv3(num_classes=80, backbone='MobileNetV1', anchors=None, anchor_
 > > - **label_smooth** (bool): 是否使用label smooth。默认值为False。
 > > - **train_random_shapes** (list|tuple): 训练时从列表中随机选择图像大小。默认值为[320, 352, 384, 416, 448, 480, 512, 544, 576, 608]。
 
-### train 训练接口
+### train
 
 ```python
 train(self, num_epochs, train_dataset, train_batch_size=8, eval_dataset=None, save_interval_epochs=20, log_interval_steps=2, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=1.0/8000, warmup_steps=1000, warmup_start_lr=0.0, lr_decay_epochs=[213, 240], lr_decay_gamma=0.1, metric=None, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05, early_stop=False, early_stop_patience=5, resume_checkpoint=None)
@@ -57,7 +57,7 @@ train(self, num_epochs, train_dataset, train_batch_size=8, eval_dataset=None, sa
 > > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。
 > > - **resume_checkpoint** (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
 
-### evaluate 评估接口
+### evaluate
 
 ```python
 evaluate(self, eval_dataset, batch_size=1, epoch_id=None, metric=None, return_details=False)
@@ -77,7 +77,7 @@ evaluate(self, eval_dataset, batch_size=1, epoch_id=None, metric=None, return_de
 >
 > > - **tuple** (metrics, eval_details) | **dict** (metrics): 当`return_details`为True时,返回(metrics, eval_details),当`return_details`为False时,返回metrics。metrics为dict,包含关键字:'bbox_mmap'或者’bbox_map‘,分别表示平均准确率平均值在各个阈值下的结果取平均值的结果(mmAP)、平均准确率平均值(mAP)。eval_details为dict,包含关键字:'bbox',对应元素预测结果列表,每个预测结果由图像id、预测框类别id、预测框坐标、预测框得分;’gt‘:真实标注框相关信息。
 
-### predict 预测接口
+### predict
 
 ```python
 predict(self, img_file, transforms=None)
@@ -87,7 +87,7 @@ predict(self, img_file, transforms=None)
 
 > **参数**
 >
-> > - **img_file** (str): 预测图像路径。
+> > - **img_file** (str|np.ndarray): 预测图像路径或numpy数组(HWC排列,BGR格式)
 > > - **transforms** (paddlex.det.transforms): 数据预处理操作。
 >
 > **返回值**
@@ -95,7 +95,7 @@ predict(self, img_file, transforms=None)
 > > - **list**: 预测结果列表,列表中每个元素均为一个dict,key包括'bbox', 'category', 'category_id', 'score',分别表示每个预测目标的框坐标信息、类别、类别id、置信度,其中框坐标信息为[xmin, ymin, w, h],即左上角x, y坐标和框的宽和高。
 
 
-## FasterRCNN
+## paddlex.det.FasterRCNN
 
 ```python
 paddlex.det.FasterRCNN(num_classes=81, backbone='ResNet50', with_fpn=True, aspect_ratios=[0.5, 1.0, 2.0], anchor_sizes=[32, 64, 128, 256, 512])
@@ -112,7 +112,7 @@ paddlex.det.FasterRCNN(num_classes=81, backbone='ResNet50', with_fpn=True, aspec
 > > - **aspect_ratios** (list): 生成anchor高宽比的可选值。默认为[0.5, 1.0, 2.0]。
 > > - **anchor_sizes** (list): 生成anchor大小的可选值。默认为[32, 64, 128, 256, 512]。
 
-### train 训练接口
+### train
 
 ```python
 train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, save_interval_epochs=1, log_interval_steps=2,save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=0.0025, warmup_steps=500, warmup_start_lr=1.0/1200, lr_decay_epochs=[8, 11], lr_decay_gamma=0.1, metric=None, use_vdl=False, early_stop=False, early_stop_patience=5, resume_checkpoint=None)
@@ -142,7 +142,7 @@ train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, sa
 > > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。
 > > - **resume_checkpoint** (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
 
-### evaluate 接口
+### evaluate
 
 ```python
 evaluate(self, eval_dataset, batch_size=1, epoch_id=None, metric=None, return_details=False)
@@ -162,7 +162,7 @@ evaluate(self, eval_dataset, batch_size=1, epoch_id=None, metric=None, return_de
 >
 > > - **tuple** (metrics, eval_details) | **dict** (metrics): 当`return_details`为True时,返回(metrics, eval_details),当`return_details`为False时,返回metrics。metrics为dict,包含关键字:'bbox_mmap'或者’bbox_map‘,分别表示平均准确率平均值在各个IoU阈值下的结果取平均值的结果(mmAP)、平均准确率平均值(mAP)。eval_details为dict,包含关键字:'bbox',对应元素预测结果列表,每个预测结果由图像id、预测框类别id、预测框坐标、预测框得分;’gt‘:真实标注框相关信息。
 
-### predict 预测接口
+### predict
 
 ```python
 predict(self, img_file, transforms=None)
@@ -172,7 +172,7 @@ predict(self, img_file, transforms=None)
 
 > **参数**
 >
-> > - **img_file** (str): 预测图像路径。
+> > - **img_file** (str|np.ndarray): 预测图像路径或numpy数组(HWC排列,BGR格式)
 > > - **transforms** (paddlex.det.transforms): 数据预处理操作。
 >
 > **返回值**

+ 2 - 2
docs/apis/models/index.rst

@@ -1,10 +1,10 @@
-模型集-models
+视觉模型集
 ============================
 
 PaddleX目前支持 `四种视觉任务解决方案 <../../cv_solutions.html>`_ ,包括图像分类、目标检测、实例分割和语义分割。对于每种视觉任务,PaddleX又提供了1种或多种模型,用户可根据需求及应用场景选取。
 
 .. toctree::
-   :maxdepth: 2
+   :maxdepth: 3
 
    classification.md
    detection.md

+ 6 - 6
docs/apis/models/instance_segmentation.md

@@ -1,6 +1,6 @@
-# 实例分割
+# Instance Segmentation
 
-## MaskRCNN
+## MaskRCNN
 
 ```python
 paddlex.det.MaskRCNN(num_classes=81, backbone='ResNet50', with_fpn=True, aspect_ratios=[0.5, 1.0, 2.0], anchor_sizes=[32, 64, 128, 256, 512])
@@ -17,7 +17,7 @@ paddlex.det.MaskRCNN(num_classes=81, backbone='ResNet50', with_fpn=True, aspect_
 > > - **aspect_ratios** (list): 生成anchor高宽比的可选值。默认为[0.5, 1.0, 2.0]。
 > > - **anchor_sizes** (list): 生成anchor大小的可选值。默认为[32, 64, 128, 256, 512]。
 
-#### train 训练接口
+#### train
 
 ```python
 train(self, num_epochs, train_dataset, train_batch_size=1, eval_dataset=None, save_interval_epochs=1, log_interval_steps=20, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=1.0/800, warmup_steps=500, warmup_start_lr=1.0 / 2400, lr_decay_epochs=[8, 11], lr_decay_gamma=0.1, metric=None, use_vdl=False, early_stop=False, early_stop_patience=5, resume_checkpoint=None)
@@ -47,7 +47,7 @@ train(self, num_epochs, train_dataset, train_batch_size=1, eval_dataset=None, sa
 > > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。
 > > - **resume_checkpoint** (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
 
-#### evaluate 评估接口
+#### evaluate
 
 ```python
 evaluate(self, eval_dataset, batch_size=1, epoch_id=None, metric=None, return_details=False)
@@ -67,7 +67,7 @@ evaluate(self, eval_dataset, batch_size=1, epoch_id=None, metric=None, return_de
 >
 > > - **tuple** (metrics, eval_details) | **dict** (metrics): 当`return_details`为True时,返回(metrics, eval_details),当return_details为False时,返回metrics。metrics为dict,包含关键字:'bbox_mmap'和'segm_mmap'或者’bbox_map‘和'segm_map',分别表示预测框和分割区域平均准确率平均值在各个IoU阈值下的结果取平均值的结果(mmAP)、平均准确率平均值(mAP)。eval_details为dict,包含关键字:'bbox',对应元素预测框结果列表,每个预测结果由图像id、预测框类别id、预测框坐标、预测框得分;'mask',对应元素预测区域结果列表,每个预测结果由图像id、预测区域类别id、预测区域坐标、预测区域得分;’gt‘:真实标注框和标注区域相关信息。
 
-#### predict 预测接口
+#### predict
 
 ```python
 predict(self, img_file, transforms=None)
@@ -77,7 +77,7 @@ predict(self, img_file, transforms=None)
 
 > **参数**
 >
-> > - **img_file** (str): 预测图像路径。
+> > - **img_file** (str|np.ndarray): 预测图像路径或numpy数组(HWC排列,BGR格式)
 > > - **transforms** (paddlex.det.transforms): 数据预处理操作。
 >
 > **返回值**

+ 18 - 209
docs/apis/models/semantic_segmentation.md

@@ -1,6 +1,6 @@
-# 语义分割
+# Semantic Segmentation
 
-## DeepLabv3p
+## paddlex.seg.DeepLabv3p
 
 ```python
 paddlex.seg.DeepLabv3p(num_classes=2, backbone='MobileNetV2_x1.0', output_stride=16, aspp_with_sep_conv=True, decoder_use_sep_conv=True, encoder_with_aspp=True, enable_decoder=True, use_bce_loss=False, use_dice_loss=False, class_weight=None, ignore_index=255)
@@ -23,7 +23,7 @@ paddlex.seg.DeepLabv3p(num_classes=2, backbone='MobileNetV2_x1.0', output_stride
 > > - **class_weight** (list/str): 交叉熵损失函数各类损失的权重。当`class_weight`为list的时候,长度应为`num_classes`。当`class_weight`为str时, weight.lower()应为'dynamic',这时会根据每一轮各类像素的比重自行计算相应的权重,每一类的权重为:每类的比例 * num_classes。class_weight取默认值None是,各类的权重1,即平时使用的交叉熵损失函数。
 > > - **ignore_index** (int): label上忽略的值,label为`ignore_index`的像素不参与损失函数的计算。默认255。
 
-### train 训练接口
+### train
 
 ```python
 train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, eval_batch_size=1, save_interval_epochs=1, log_interval_steps=2, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=0.01, lr_decay_power=0.9, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05, early_stop=False, early_stop_patience=5, resume_checkpoint=None):
@@ -51,7 +51,7 @@ train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, ev
 > > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。
 > > - **resume_checkpoint** (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
 
-### evaluate 评估接口
+### evaluate
 
 ```python
 evaluate(self, eval_dataset, batch_size=1, epoch_id=None, return_details=False):
@@ -73,7 +73,7 @@ evaluate(self, eval_dataset, batch_size=1, epoch_id=None, return_details=False):
 > > - **tuple** (metrics, eval_details):当`return_details`为True时,增加返回dict (eval_details),
 > >   包含关键字:'confusion_matrix',表示评估的混淆矩阵。
 
-### predict 预测接口
+### predict
 
 ```
 predict(self, im_file, transforms=None):
@@ -83,14 +83,14 @@ predict(self, im_file, transforms=None):
 
 > **参数**
 > >
-> > - **img_file** (str): 预测图像路径。
+> > - **img_file** (str|np.ndarray): 预测图像路径或numpy数组(HWC排列,BGR格式)
 > > - **transforms** (paddlex.seg.transforms): 数据预处理操作。
 
 > **返回值**
 > >
 > > - **dict**: 包含关键字'label_map'和'score_map', 'label_map'存储预测结果灰度图,像素值表示对应的类别,'score_map'存储各类别的概率,shape=(h, w, num_classes)。
 
-## UNet
+## paddlex.seg.UNet
 
 ```python
 paddlex.seg.UNet(num_classes=2, upsample_mode='bilinear', use_bce_loss=False, use_dice_loss=False, class_weight=None, ignore_index=255)
@@ -107,75 +107,11 @@ paddlex.seg.UNet(num_classes=2, upsample_mode='bilinear', use_bce_loss=False, us
 > > - **class_weight** (list/str): 交叉熵损失函数各类损失的权重。当`class_weight`为list的时候,长度应为`num_classes`。当`class_weight`为str时, weight.lower()应为'dynamic',这时会根据每一轮各类像素的比重自行计算相应的权重,每一类的权重为:每类的比例 * num_classes。class_weight取默认值None是,各类的权重1,即平时使用的交叉熵损失函数。
 > > - **ignore_index** (int): label上忽略的值,label为`ignore_index`的像素不参与损失函数的计算。默认255。
 
-### train 训练接口
+> - train 训练接口说明同 [DeepLabv3p模型train接口](#train)
+> - evaluate 评估接口说明同 [DeepLabv3p模型evaluate接口](#evaluate)
+> - predict 预测接口说明同 [DeepLabv3p模型predict接口](#predict)
 
-```python
-train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, eval_batch_size=1, save_interval_epochs=1, log_interval_steps=2, save_dir='output', pretrain_weights='COCO', optimizer=None, learning_rate=0.01, lr_decay_power=0.9, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05, early_stop=False, early_stop_patience=5, resume_checkpoint=None):
-```
-
-> UNet模型训练接口。
-
-> **参数**
-> >
-> > - **num_epochs** (int): 训练迭代轮数。
-> > - **train_dataset** (paddlex.datasets): 训练数据读取器。
-> > - **train_batch_size** (int): 训练数据batch大小。同时作为验证数据batch大小。默认2。
-> > - **eval_dataset** (paddlex.datasets): 评估数据读取器。
-> > - **save_interval_epochs** (int): 模型保存间隔(单位:迭代轮数)。默认为1。
-> > - **log_interval_steps** (int): 训练日志输出间隔(单位:迭代次数)。默认为2。
-> > - **save_dir** (str): 模型保存路径。默认'output'
-> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'COCO',则自动下载在COCO图片数据上预训练的模型权重;若为None,则不使用预训练模型。默认'COCO'。
-> > - **optimizer** (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认的优化器:使用fluid.optimizer.Momentum优化方法,polynomial的学习率衰减策略。
-> > - **learning_rate** (float): 默认优化器的初始学习率。默认0.01。
-> > - **lr_decay_power** (float): 默认优化器学习率衰减指数。默认0.9。
-> > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认False。
-> > - **sensitivities_file** (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',则自动下载在Cityscapes图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
-> > - **eval_metric_loss** (float): 可容忍的精度损失。默认为0.05。
-> > - **early_stop** (float): 是否使用提前终止训练策略。默认值为False。
-> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。
-> > - **resume_checkpoint** (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
-
-#### evaluate 评估接口
-
-```
-evaluate(self, eval_dataset, batch_size=1, epoch_id=None, return_details=False):
-```
-
-> UNet模型评估接口。
-
-> **参数**
-> >
-> > - **eval_dataset** (paddlex.datasets): 评估数据读取器。
-> > - **batch_size** (int): 评估时的batch大小。默认1。
-> > - **epoch_id** (int): 当前评估模型所在的训练轮数。
-> > - **return_details** (bool): 是否返回详细信息。默认False。
-
-> **返回值**
-> >
-> > - **dict**: 当return_details为False时,返回dict。包含关键字:'miou'、'category_iou'、'macc'、
-> >   'category_acc'和'kappa',分别表示平均iou、各类别iou、平均准确率、各类别准确率和kappa系数。
-> > - **tuple** (metrics, eval_details):当return_details为True时,增加返回dict (eval_details),
-> >   包含关键字:'confusion_matrix',表示评估的混淆矩阵。
-
-#### predict 预测接口
-
-```
-predict(self, im_file, transforms=None):
-```
-
-> UNet模型预测接口。需要注意的是,只有在训练过程中定义了eval_dataset,模型在保存时才会将预测时的图像处理流程保存在`UNet.test_transforms`和`UNet.eval_transforms`中。如未在训练时定义eval_dataset,那在调用预测`predict`接口时,用户需要再重新定义test_transforms传入给`predict`接口。
-
-> **参数**
-> >
-> > - **img_file** (str): 预测图像路径。
-> > - **transforms** (paddlex.seg.transforms): 数据预处理操作。
-
-> **返回值**
-> >
-> > - **dict**: 包含关键字'label_map'和'score_map', 'label_map'存储预测结果灰度图,像素值表示对应的类别,'score_map'存储各类别的概率,shape=(h, w, num_classes)。
-
-
-## HRNet类
+## paddlex.seg.HRNet
 
 ```python
 paddlex.seg.HRNet(num_classes=2, width=18, use_bce_loss=False, use_dice_loss=False, class_weight=None, ignore_index=255)
@@ -192,75 +128,11 @@ paddlex.seg.HRNet(num_classes=2, width=18, use_bce_loss=False, use_dice_loss=Fal
 > > - **class_weight** (list|str): 交叉熵损失函数各类损失的权重。当`class_weight`为list的时候,长度应为`num_classes`。当`class_weight`为str时, weight.lower()应为'dynamic',这时会根据每一轮各类像素的比重自行计算相应的权重,每一类的权重为:每类的比例 * num_classes。class_weight取默认值None是,各类的权重1,即平时使用的交叉熵损失函数。
 > > - **ignore_index** (int): label上忽略的值,label为`ignore_index`的像素不参与损失函数的计算。默认255。
 
-### train 训练接口
-
-```python
-train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, eval_batch_size=1, save_interval_epochs=1, log_interval_steps=2, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=0.01, lr_decay_power=0.9, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05, early_stop=False, early_stop_patience=5, resume_checkpoint=None):
-```
-
-> HRNet模型训练接口。
-
-> **参数**
-> >
-> > - **num_epochs** (int): 训练迭代轮数。
-> > - **train_dataset** (paddlex.datasets): 训练数据读取器。
-> > - **train_batch_size** (int): 训练数据batch大小。同时作为验证数据batch大小。默认2。
-> > - **eval_dataset** (paddlex.datasets): 评估数据读取器。
-> > - **save_interval_epochs** (int): 模型保存间隔(单位:迭代轮数)。默认为1。
-> > - **log_interval_steps** (int): 训练日志输出间隔(单位:迭代次数)。默认为2。
-> > - **save_dir** (str): 模型保存路径。默认'output'
-> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在ImageNet数据集上预训练的模型权重;若为字符串'CITYSCAPES',则自动下载在CITYSCAPES图片数据上预训练的模型权重(注意:目前仅提供`width`取值为18的CITYSCAPES预训练模型);若为None,则不使用预训练模型。默认'IMAGENET'。
-> > - **optimizer** (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认的优化器:使用fluid.optimizer.Momentum优化方法,polynomial的学习率衰减策略。
-> > - **learning_rate** (float): 默认优化器的初始学习率。默认0.01。
-> > - **lr_decay_power** (float): 默认优化器学习率衰减指数。默认0.9。
-> > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认False。
-> > - **sensitivities_file** (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',则自动下载在Cityscapes图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
-> > - **eval_metric_loss** (float): 可容忍的精度损失。默认为0.05。
-> > - **early_stop** (float): 是否使用提前终止训练策略。默认值为False。
-> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。
-> > - **resume_checkpoint** (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
-
-#### evaluate 评估接口
-
-```
-evaluate(self, eval_dataset, batch_size=1, epoch_id=None, return_details=False):
-```
+> - train 训练接口说明同 [DeepLabv3p模型train接口](#train)
+> - evaluate 评估接口说明同 [DeepLabv3p模型evaluate接口](#evaluate)
+> - predict 预测接口说明同 [DeepLabv3p模型predict接口](#predict)
 
-> HRNet模型评估接口。
-
-> **参数**
-> >
-> > - **eval_dataset** (paddlex.datasets): 评估数据读取器。
-> > - **batch_size** (int): 评估时的batch大小。默认1。
-> > - **epoch_id** (int): 当前评估模型所在的训练轮数。
-> > - **return_details** (bool): 是否返回详细信息。默认False。
-
-> **返回值**
-> >
-> > - **dict**: 当return_details为False时,返回dict。包含关键字:'miou'、'category_iou'、'macc'、
-> >   'category_acc'和'kappa',分别表示平均iou、各类别iou、平均准确率、各类别准确率和kappa系数。
-> > - **tuple** (metrics, eval_details):当return_details为True时,增加返回dict (eval_details),
-> >   包含关键字:'confusion_matrix',表示评估的混淆矩阵。
-
-#### predict 预测接口
-
-```
-predict(self, im_file, transforms=None):
-```
-
-> HRNet模型预测接口。需要注意的是,只有在训练过程中定义了eval_dataset,模型在保存时才会将预测时的图像处理流程保存在`UNet.test_transforms`和`UNet.eval_transforms`中。如未在训练时定义eval_dataset,那在调用预测`predict`接口时,用户需要再重新定义test_transforms传入给`predict`接口。
-
-> **参数**
-> >
-> > - **img_file** (str): 预测图像路径。
-> > - **transforms** (paddlex.seg.transforms): 数据预处理操作。
-
-> **返回值**
-> >
-> > - **dict**: 包含关键字'label_map'和'score_map', 'label_map'存储预测结果灰度图,像素值表示对应的类别,'score_map'存储各类别的概率,shape=(h, w, num_classes)。
-
-
-## FastSCNN类
+## paddlex.seg.FastSCNN
 
 ```python
 paddlex.seg.FastSCNN(num_classes=2, use_bce_loss=False, use_dice_loss=False, class_weight=None, ignore_index=255, multi_loss_weight=[1.0])
@@ -277,69 +149,6 @@ paddlex.seg.FastSCNN(num_classes=2, use_bce_loss=False, use_dice_loss=False, cla
 > > - **ignore_index** (int): label上忽略的值,label为`ignore_index`的像素不参与损失函数的计算。默认255。
 > > - **multi_loss_weight** (list): 多分支上的loss权重。默认计算一个分支上的loss,即默认值为[1.0]。也支持计算两个分支或三个分支上的loss,权重按[fusion_branch_weight, higher_branch_weight, lower_branch_weight]排列,fusion_branch_weight为空间细节分支和全局上下文分支融合后的分支上的loss权重,higher_branch_weight为空间细节分支上的loss权重,lower_branch_weight为全局上下文分支上的loss权重,若higher_branch_weight和lower_branch_weight未设置则不会计算这两个分支上的loss。
 
-### train 训练接口
-
-```python
-train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, eval_batch_size=1, save_interval_epochs=1, log_interval_steps=2, save_dir='output', pretrain_weights='CITYSCAPES', optimizer=None, learning_rate=0.01, lr_decay_power=0.9, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05, early_stop=False, early_stop_patience=5, resume_checkpoint=None):
-```
-
-> FastSCNN模型训练接口。
-
-> **参数**
-> >
-> > - **num_epochs** (int): 训练迭代轮数。
-> > - **train_dataset** (paddlex.datasets): 训练数据读取器。
-> > - **train_batch_size** (int): 训练数据batch大小。同时作为验证数据batch大小。默认2。
-> > - **eval_dataset** (paddlex.datasets): 评估数据读取器。
-> > - **save_interval_epochs** (int): 模型保存间隔(单位:迭代轮数)。默认为1。
-> > - **log_interval_steps** (int): 训练日志输出间隔(单位:迭代次数)。默认为2。
-> > - **save_dir** (str): 模型保存路径。默认'output'
-> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'CITYSCAPES',则自动下载在CITYSCAPES图片数据上预训练的模型权重;若为None,则不使用预训练模型。默认'CITYSCAPES'。
-> > - **optimizer** (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认的优化器:使用fluid.optimizer.Momentum优化方法,polynomial的学习率衰减策略。
-> > - **learning_rate** (float): 默认优化器的初始学习率。默认0.01。
-> > - **lr_decay_power** (float): 默认优化器学习率衰减指数。默认0.9。
-> > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认False。
-> > - **sensitivities_file** (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',则自动下载在Cityscapes图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
-> > - **eval_metric_loss** (float): 可容忍的精度损失。默认为0.05。
-> > - **early_stop** (float): 是否使用提前终止训练策略。默认值为False。
-> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。
-> > - **resume_checkpoint** (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
-
-#### evaluate 评估接口
-
-```
-evaluate(self, eval_dataset, batch_size=1, epoch_id=None, return_details=False):
-```
-
-> FastSCNN模型评估接口。
-
-> **参数**
-> >
-> > - **eval_dataset** (paddlex.datasets): 评估数据读取器。
-> > - **batch_size** (int): 评估时的batch大小。默认1。
-> > - **epoch_id** (int): 当前评估模型所在的训练轮数。
-> > - **return_details** (bool): 是否返回详细信息。默认False。
-
-> **返回值**
-> >
-> > - **dict**: 当return_details为False时,返回dict。包含关键字:'miou'、'category_iou'、'macc'、
-> >   'category_acc'和'kappa',分别表示平均iou、各类别iou、平均准确率、各类别准确率和kappa系数。
-> > - **tuple** (metrics, eval_details):当return_details为True时,增加返回dict (eval_details),
-> >   包含关键字:'confusion_matrix',表示评估的混淆矩阵。
-
-#### predict 预测接口
-
-```
-predict(self, im_file, transforms=None):
-```
-
-> FastSCNN模型预测接口。需要注意的是,只有在训练过程中定义了eval_dataset,模型在保存时才会将预测时的图像处理流程保存在`UNet.test_transforms`和`UNet.eval_transforms`中。如未在训练时定义eval_dataset,那在调用预测`predict`接口时,用户需要再重新定义test_transforms传入给`predict`接口。
-
-> **参数**
-> >
-> > - **img_file** (str): 预测图像路径。
-> > - **transforms** (paddlex.seg.transforms): 数据预处理操作。
-
-> **返回值**
-> >
-> > - **dict**: 包含关键字'label_map'和'score_map', 'label_map'存储预测结果灰度图,像素值表示对应的类别,'score_map'存储各类别的概率,shape=(h, w, num_classes)。
+> - train 训练接口说明同 [DeepLabv3p模型train接口](#train)
+> - evaluate 评估接口说明同 [DeepLabv3p模型evaluate接口](#evaluate)
+> - predict 预测接口说明同 [DeepLabv3p模型predict接口](#predict)

+ 5 - 3
docs/apis/slim.md

@@ -1,6 +1,7 @@
-# 模型压缩-slim
+# 模型压缩
 
-## 计算参数敏感度
+## paddlex.slim.cal_params_sensitivities
+> **计算参数敏感度**  
 ```
 paddlex.slim.cal_params_sensitivities(model, save_file, eval_dataset, batch_size=8)
 ```
@@ -18,7 +19,8 @@ paddlex.slim.cal_params_sensitivities(model, save_file, eval_dataset, batch_size
 * **batch_size** (int): 评估时的batch_size大小。
 
 
-## 导出量化模型
+## paddlex.slim.export_quant_model
+> **导出量化模型**  
 ```
 paddlex.slim.export_quant_model(model, test_dataset, batch_size=2, batch_num=10, save_dir='./quant_model', cache_dir='./temp')
 ```

+ 50 - 50
docs/apis/transforms/cls_transforms.md

@@ -1,56 +1,18 @@
-# 图像分类-cls.transforms
+# paddlex.cls.transforms
 
 对图像分类任务的数据进行操作。可以利用[Compose](#compose)类将图像预处理/增强操作进行组合。
 
-## Compose
+## Compose
 ```python
 paddlex.cls.transforms.Compose(transforms)
 ```
 
 根据数据预处理/增强算子对输入数据进行操作。  [使用示例](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/classification/mobilenetv2.py#L13)
 
-### 参数
-* **transforms** (list): 数据预处理/数据增强列表。
-
-
-## RandomCrop类
-```python
-paddlex.cls.transforms.RandomCrop(crop_size=224, lower_scale=0.08, lower_ratio=3. / 4, upper_ratio=4. / 3)
-```
-
-对图像进行随机剪裁,模型训练时的数据增强操作。
-1. 根据lower_scale、lower_ratio、upper_ratio计算随机剪裁的高、宽。
-2. 根据随机剪裁的高、宽随机选取剪裁的起始点。
-3. 剪裁图像。
-4. 调整剪裁后的图像的大小到crop_size*crop_size。
-
-### 参数
-* **crop_size** (int): 随机裁剪后重新调整的目标边长。默认为224。
-* **lower_scale** (float): 裁剪面积相对原面积比例的最小限制。默认为0.08。
-* **lower_ratio** (float): 宽变换比例的最小限制。默认为3. / 4。
-* **upper_ratio** (float): 宽变换比例的最小限制。默认为4. / 3。
-
-## RandomHorizontalFlip类
-```python
-paddlex.cls.transforms.RandomHorizontalFlip(prob=0.5)
-```
-
-以一定的概率对图像进行随机水平翻转,模型训练时的数据增强操作。
-
-### 参数
-* **prob** (float): 随机水平翻转的概率。默认为0.5。
-
-## RandomVerticalFlip类
-```python
-paddlex.cls.transforms.RandomVerticalFlip(prob=0.5)
-```
-
-以一定的概率对图像进行随机垂直翻转,模型训练时的数据增强操作。
-
-### 参数
-* **prob** (float): 随机垂直翻转的概率。默认为0.5。
+> **参数**
+> * **transforms** (list): 数据预处理/数据增强列表。
 
-## Normalize
+## Normalize
 ```python
 paddlex.cls.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
 ```
@@ -63,7 +25,7 @@ paddlex.cls.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224,
 * **mean** (list): 图像数据集的均值。默认为[0.485, 0.456, 0.406]。
 * **std** (list): 图像数据集的标准差。默认为[0.229, 0.224, 0.225]。
 
-## ResizeByShort
+## ResizeByShort
 ```python
 paddlex.cls.transforms.ResizeByShort(short_size=256, max_size=-1)
 ```
@@ -79,7 +41,7 @@ paddlex.cls.transforms.ResizeByShort(short_size=256, max_size=-1)
 * **short_size** (int): 调整大小后的图像目标短边长度。默认为256。
 * **max_size** (int): 长边目标长度的最大限制。默认为-1。
 
-## CenterCrop
+## CenterCrop
 ```python
 paddlex.cls.transforms.CenterCrop(crop_size=224)
 ```
@@ -91,7 +53,44 @@ paddlex.cls.transforms.CenterCrop(crop_size=224)
 ### 参数
 * **crop_size** (int): 裁剪的目标边长。默认为224。
 
-## RandomRotate类
+## RandomCrop
+```python
+paddlex.cls.transforms.RandomCrop(crop_size=224, lower_scale=0.08, lower_ratio=3. / 4, upper_ratio=4. / 3)
+```
+
+对图像进行随机剪裁,模型训练时的数据增强操作。
+1. 根据lower_scale、lower_ratio、upper_ratio计算随机剪裁的高、宽。
+2. 根据随机剪裁的高、宽随机选取剪裁的起始点。
+3. 剪裁图像。
+4. 调整剪裁后的图像的大小到crop_size*crop_size。
+
+### 参数
+* **crop_size** (int): 随机裁剪后重新调整的目标边长。默认为224。
+* **lower_scale** (float): 裁剪面积相对原面积比例的最小限制。默认为0.08。
+* **lower_ratio** (float): 宽变换比例的最小限制。默认为3. / 4。
+* **upper_ratio** (float): 宽变换比例的最小限制。默认为4. / 3。
+
+## RandomHorizontalFlip
+```python
+paddlex.cls.transforms.RandomHorizontalFlip(prob=0.5)
+```
+
+以一定的概率对图像进行随机水平翻转,模型训练时的数据增强操作。
+
+### 参数
+* **prob** (float): 随机水平翻转的概率。默认为0.5。
+
+## RandomVerticalFlip
+```python
+paddlex.cls.transforms.RandomVerticalFlip(prob=0.5)
+```
+
+以一定的概率对图像进行随机垂直翻转,模型训练时的数据增强操作。
+
+### 参数
+* **prob** (float): 随机垂直翻转的概率。默认为0.5。
+
+## RandomRotate
 ```python
 paddlex.cls.transforms.RandomRotate(rotate_range=30, prob=0.5)
 ```
@@ -102,7 +101,7 @@ paddlex.cls.transforms.RandomRotate(rotate_range=30, prob=0.5)
 * **rotate_range** (int): 旋转度数的范围。默认为30。
 * **prob** (float): 随机旋转的概率。默认为0.5。
 
-## RandomDistort
+## RandomDistort
 ```python
 paddlex.cls.transforms.RandomDistort(brightness_range=0.9, brightness_prob=0.5, contrast_range=0.9, contrast_prob=0.5, saturation_range=0.9, saturation_prob=0.5, hue_range=18, hue_prob=0.5)
 ```
@@ -123,15 +122,15 @@ paddlex.cls.transforms.RandomDistort(brightness_range=0.9, brightness_prob=0.5,
 * **hue_range** (int): 色调因子的范围。默认为18。
 * **hue_prob** (float): 随机调整色调的概率。默认为0.5。
 
-## ComposedClsTransforms
+## ComposedClsTransforms
 ```python
-paddlex.cls.transforms.ComposedClsTransforms(mode, crop_size=[224, 224], mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
+paddlex.cls.transforms.ComposedClsTransforms(mode, crop_size=[224, 224], mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], random_horizontal_flip=True)
 ```
 分类模型中已经组合好的数据处理流程,开发者可以直接使用ComposedClsTransforms,简化手动组合transforms的过程, 该类中已经包含了[RandomCrop](#RandomCrop)和[RandomHorizontalFlip](#RandomHorizontalFlip)两种数据增强方式,你仍可以通过[add_augmenters函数接口](#add_augmenters)添加新的数据增强方式。  
 ComposedClsTransforms共包括以下几个步骤:
 > 训练阶段:
 > > 1. 随机从图像中crop一块子图,并resize成crop_size大小
-> > 2. 将1的输出按0.5的概率随机进行水平翻转
+> > 2. 将1的输出按0.5的概率随机进行水平翻转, 若random_horizontal_flip为False,则跳过此步骤
 > > 3. 将图像进行归一化
 > 验证/预测阶段:
 > > 1. 将图像按比例Resize,使得最小边长度为crop_size[0] * 1.14
@@ -143,6 +142,7 @@ ComposedClsTransforms共包括以下几个步骤:
 * **crop_size** (int|list): 输入到模型里的图像大小,默认为[224, 224](与原图大小无关,根据上述几个步骤,会将原图处理成该图大小输入给模型训练)
 * **mean** (list): 图像均值, 默认为[0.485, 0.456, 0.406]。
 * **std** (list): 图像方差,默认为[0.229, 0.224, 0.225]。
+* **random_horizontal_flip**(bool): 数据增强,是否以0,5的概率使用随机水平翻转增强,仅在model为'train'时生效,默认为True。底层实现采用[paddlex.cls.transforms.RandomHorizontalFlip](#randomhorizontalflip)
 
 ### 添加数据增强方式
 ```python

+ 39 - 34
docs/apis/transforms/det_transforms.md

@@ -1,8 +1,8 @@
-# 检测和实例分割-det.transforms
+# paddlex.det.transforms
 
-对目标检测任务的数据进行操作。可以利用[Compose](#compose)类将图像预处理/增强操作进行组合。
+对目标检测/实例分割任务的数据进行操作。可以利用[Compose](#compose)类将图像预处理/增强操作进行组合。
 
-## Compose
+## Compose
 ```python
 paddlex.det.transforms.Compose(transforms)
 ```
@@ -12,7 +12,20 @@ paddlex.det.transforms.Compose(transforms)
 ### 参数
 * **transforms** (list): 数据预处理/数据增强列表。
 
-## ResizeByShort类
+## Normalize
+```python
+paddlex.det.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
+```
+
+对图像进行标准化。  
+1. 归一化图像到到区间[0.0, 1.0]。  
+2. 对图像进行减均值除以标准差操作。
+
+### 参数
+* **mean** (list): 图像数据集的均值。默认为[0.485, 0.456, 0.406]。
+* **std** (list): 图像数据集的标准差。默认为[0.229, 0.224, 0.225]。
+
+## ResizeByShort
 ```python
 paddlex.det.transforms.ResizeByShort(short_size=800, max_size=1333)
 ```
@@ -28,7 +41,7 @@ paddlex.det.transforms.ResizeByShort(short_size=800, max_size=1333)
 * **short_size** (int): 短边目标长度。默认为800。
 * **max_size** (int): 长边目标长度的最大限制。默认为1333。
 
-## Padding
+## Padding
 ```python
 paddlex.det.transforms.Padding(coarsest_stride=1)
 ```
@@ -41,7 +54,7 @@ paddlex.det.transforms.Padding(coarsest_stride=1)
 ### 参数
 * **coarsest_stride** (int): 填充后的图像长、宽为该参数的倍数,默认为1。
 
-## Resize
+## Resize
 ```python
 paddlex.det.transforms.Resize(target_size=608, interp='LINEAR')
 ```
@@ -55,7 +68,7 @@ paddlex.det.transforms.Resize(target_size=608, interp='LINEAR')
 * **target_size** (int/list/tuple): 短边目标长度。默认为608。
 * **interp** (str): resize的插值方式,与opencv的插值方式对应,取值范围为['NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM']。默认为"LINEAR"。
 
-## RandomHorizontalFlip
+## RandomHorizontalFlip
 ```python
 paddlex.det.transforms.RandomHorizontalFlip(prob=0.5)
 ```
@@ -65,20 +78,7 @@ paddlex.det.transforms.RandomHorizontalFlip(prob=0.5)
 ### 参数
 * **prob** (float): 随机水平翻转的概率。默认为0.5。
 
-## Normalize类
-```python
-paddlex.det.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
-```
-
-对图像进行标准化。  
-1. 归一化图像到到区间[0.0, 1.0]。  
-2. 对图像进行减均值除以标准差操作。
-
-### 参数
-* **mean** (list): 图像数据集的均值。默认为[0.485, 0.456, 0.406]。
-* **std** (list): 图像数据集的标准差。默认为[0.229, 0.224, 0.225]。
-
-## RandomDistort类
+## RandomDistort
 ```python
 paddlex.det.transforms.RandomDistort(brightness_range=0.5, brightness_prob=0.5, contrast_range=0.5, contrast_prob=0.5, saturation_range=0.5, saturation_prob=0.5, hue_range=18, hue_prob=0.5)
 ```
@@ -99,7 +99,7 @@ paddlex.det.transforms.RandomDistort(brightness_range=0.5, brightness_prob=0.5,
 * **hue_range** (int): 色调因子的范围。默认为18。
 * **hue_prob** (float): 随机调整色调的概率。默认为0.5。
 
-## MixupImage
+## MixupImage
 ```python
 paddlex.det.transforms.MixupImage(alpha=1.5, beta=1.5, mixup_epoch=-1)
 ```
@@ -141,7 +141,7 @@ paddlex.det.transforms.RandomExpand(ratio=4., prob=0.5, fill_value=[123.675, 116
 
 【注意】该数据增强必须在数据增强Resize、ResizeByShort之前使用。
 
-## RandomCrop
+## RandomCrop
 ```python
 paddlex.det.transforms.RandomCrop(aspect_ratio=[.5, 2.], thresholds=[.0, .1, .3, .5, .7, .9], scaling=[.3, 1.], num_attempts=50, allow_no_crop=True, cover_all_box=False)
 ```
@@ -168,14 +168,14 @@ paddlex.det.transforms.RandomCrop(aspect_ratio=[.5, 2.], thresholds=[.0, .1, .3,
 * **allow_no_crop** (bool): 是否允许未进行裁剪。默认值为True。
 * **cover_all_box** (bool): 是否要求所有的真实标注框都必须在裁剪区域内。默认值为False。
 
-## ComposedRCNNTransforms
+## ComposedRCNNTransforms
 ```python
-paddlex.det.transforms.ComposedRCNNTransforms(mode, min_max_size=[224, 224], mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
+paddlex.det.transforms.ComposedRCNNTransforms(mode, min_max_size=[224, 224], mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], random_horizontal_flip=True)
 ```
 目标检测FasterRCNN和实例分割MaskRCNN模型中已经组合好的数据处理流程,开发者可以直接使用ComposedRCNNTransforms,简化手动组合transforms的过程, 该类中已经包含了[RandomHorizontalFlip](#RandomHorizontalFlip)数据增强方式,你仍可以通过[add_augmenters函数接口](#add_augmenters)添加新的数据增强方式。  
 ComposedRCNNTransforms共包括以下几个步骤:
 > 训练阶段:
-> > 1. 随机以0.5的概率将图像水平翻转
+> > 1. 随机以0.5的概率将图像水平翻转, 若random_horizontal_flip为False,则跳过此步骤
 > > 2. 将图像进行归一化
 > > 3. 图像采用[ResizeByShort](#ResizeByShort)方式,根据min_max_size参数,进行缩入
 > > 4. 使用[Padding](#Padding)将图像的长和宽分别Padding成32的倍数
@@ -189,6 +189,7 @@ ComposedRCNNTransforms共包括以下几个步骤:
 * **min_max_size** (list): 输入模型中图像的最短边长度和最长边长度,参考[ResizeByShort](#ResizeByShort)(与原图大小无关,根据上述几个步骤,会将原图处理成相应大小输入给模型训练),默认[800, 1333]
 * **mean** (list): 图像均值, 默认为[0.485, 0.456, 0.406]。
 * **std** (list): 图像方差,默认为[0.229, 0.224, 0.225]。
+* **random_horizontal_flip**(bool): 数据增强,是否以0.5的概率使用随机水平翻转增强,仅在mode为'train'时生效,默认为True。底层实现采用[paddlex.det.transforms.RandomHorizontalFlip](#randomhorizontalflip)
 
 ### 添加数据增强方式
 ```python
@@ -232,19 +233,19 @@ eval_transforms = transforms.Composed([
 ```
 
 
-## ComposedYOLOv3Transforms
+## ComposedYOLOv3Transforms
 ```python
-paddlex.det.transforms.ComposedYOLOv3Transforms(mode, shape=[608, 608], mixup_epoch=250, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
+paddlex.det.transforms.ComposedYOLOv3Transforms(mode, shape=[608, 608], mixup_epoch=250, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], random_distort=True, random_expand=True, random_crop=True, random_horizontal_flip=True)
 ```
 目标检测YOLOv3模型中已经组合好的数据处理流程,开发者可以直接使用ComposedYOLOv3Transforms,简化手动组合transforms的过程, 该类中已经包含了[MixupImage](#MixupImage)、[RandomDistort](#RandomDistort)、[RandomExpand](#RandomExpand)、[RandomCrop](#RandomCrop)、[RandomHorizontalFlip](#RandomHorizontalFlip)5种数据增强方式,你仍可以通过[add_augmenters函数接口](#add_augmenters)添加新的数据增强方式。  
 ComposedYOLOv3Transforms共包括以下几个步骤:
 > 训练阶段:
-> > 1. 在前mixup_epoch轮迭代中,使用MixupImage策略
-> > 2. 对图像进行随机扰动,包括亮度,对比度,饱和度和色调
-> > 3. 随机扩充图像
-> > 4. 随机裁剪图像
+> > 1. 在前mixup_epoch轮迭代中,使用MixupImage策略,若mixup_epoch为-1,则跳过此步骤
+> > 2. 对图像进行随机扰动,包括亮度,对比度,饱和度和色调,若random_distort为False,则跳过此步骤
+> > 3. 随机扩充图像,若random_expand为False, 则跳过此步骤
+> > 4. 随机裁剪图像,若random_crop为False, 则跳过此步骤
 > > 5. 将4步骤的输出图像Resize成shape参数的大小
-> > 6. 随机0.5的概率水平翻转图像
+> > 6. 随机0.5的概率水平翻转图像,若random_horizontal_flip为False,则跳过此步骤
 > > 7. 图像归一化
 > 验证/预测阶段:
 > > 1. 将图像Resize成shape参数大小
@@ -253,9 +254,13 @@ ComposedYOLOv3Transforms共包括以下几个步骤:
 ### 参数
 * **mode** (str): Transforms所处的阶段,包括`train', 'eval'或'test'
 * **shape** (list): 输入模型中图像的大小(与原图大小无关,根据上述几个步骤,会将原图处理成相应大小输入给模型训练), 默认[608, 608]
-* **mixup_epoch**(int): 模型训练过程中,在前mixup_epoch轮迭代中,使用mixup策略,如果为-1,则不使用mixup策略, 默认250。
+* **mixup_epoch**(int): 模型训练过程中,在前mixup_epoch轮迭代中,使用mixup策略,如果为-1,则不使用mixup策略, 默认250。底层实现采用[paddlex.det.transforms.MixupImage](#mixupimage)
 * **mean** (list): 图像均值, 默认为[0.485, 0.456, 0.406]。
 * **std** (list): 图像方差,默认为[0.229, 0.224, 0.225]。
+* **random_distort**(bool): 数据增强,是否在训练过程中随机扰动图像,仅在mode为'train'时生效,默认为True。底层实现采用[paddlex.det.transforms.RandomDistort](#randomdistort)
+* **random_expand**(bool): 数据增强,是否在训练过程随机扩张图像,仅在mode为'train'时生效,默认为True。底层实现采用[paddlex.det.transforms.RandomExpand](#randomexpand)
+* **random_crop**(bool): 数据增强,是否在训练过程中随机裁剪图像,仅在mode为'train'时生效,默认为True。底层实现采用[paddlex.det.transforms.RandomCrop](#randomcrop)
+* **random_horizontal_flip**(bool): 数据增强,是否在训练过程中随机水平翻转图像,仅在mode为'train'时生效,默认为True。底层实现采用[paddlex.det.transforms.RandomHorizontalFlip](#randomhorizontalflip)
 
 ### 添加数据增强方式
 ```python

+ 1 - 1
docs/apis/transforms/index.rst

@@ -1,4 +1,4 @@
-数据处理-transforms
+数据处理与增强
 ============================
 
 transforms为PaddleX的模型训练提供了数据的预处理和数据增强接口。

+ 23 - 21
docs/apis/transforms/seg_transforms.md

@@ -1,9 +1,9 @@
-# 语义分割-seg.transforms
+# paddlex.seg.transforms
 
 对用于分割任务的数据进行操作。可以利用[Compose](#compose)类将图像预处理/增强操作进行组合。
 
 
-## Compose
+## Compose
 ```python
 paddlex.seg.transforms.Compose(transforms)
 ```
@@ -12,7 +12,7 @@ paddlex.seg.transforms.Compose(transforms)
 * **transforms** (list): 数据预处理/数据增强列表。
 
 
-## RandomHorizontalFlip
+## RandomHorizontalFlip
 ```python
 paddlex.seg.transforms.RandomHorizontalFlip(prob=0.5)
 ```
@@ -21,7 +21,7 @@ paddlex.seg.transforms.RandomHorizontalFlip(prob=0.5)
 * **prob** (float): 随机水平翻转的概率。默认值为0.5。
 
 
-## RandomVerticalFlip
+## RandomVerticalFlip
 ```python
 paddlex.seg.transforms.RandomVerticalFlip(prob=0.1)
 ```
@@ -30,7 +30,7 @@ paddlex.seg.transforms.RandomVerticalFlip(prob=0.1)
 * **prob**  (float): 随机垂直翻转的概率。默认值为0.1。
 
 
-## Resize
+## Resize
 ```python
 paddlex.seg.transforms.Resize(target_size, interp='LINEAR')
 ```
@@ -46,7 +46,7 @@ paddlex.seg.transforms.Resize(target_size, interp='LINEAR')
 可选的值为['NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4'],默认为"LINEAR"。
 
 
-## ResizeByLong
+## ResizeByLong
 ```python
 paddlex.seg.transforms.ResizeByLong(long_size)
 ```
@@ -55,7 +55,7 @@ paddlex.seg.transforms.ResizeByLong(long_size)
 * **long_size** (int): resize后图像的长边大小。
 
 
-## ResizeRangeScaling
+## ResizeRangeScaling
 ```python
 paddlex.seg.transforms.ResizeRangeScaling(min_value=400, max_value=600)
 ```
@@ -65,7 +65,7 @@ paddlex.seg.transforms.ResizeRangeScaling(min_value=400, max_value=600)
 * **max_value** (int): 图像长边resize后的最大值。默认值600。
 
 
-## ResizeStepScaling
+## ResizeStepScaling
 ```python
 paddlex.seg.transforms.ResizeStepScaling(min_scale_factor=0.75, max_scale_factor=1.25, scale_step_size=0.25)
 ```
@@ -76,7 +76,7 @@ paddlex.seg.transforms.ResizeStepScaling(min_scale_factor=0.75, max_scale_factor
 * **scale_step_size** (float), resize尺度范围间隔。默认值0.25。
 
 
-## Normalize
+## Normalize
 ```python
 paddlex.seg.transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
 ```
@@ -89,7 +89,7 @@ paddlex.seg.transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
 * **std** (list): 图像数据集的标准差。默认值[0.5, 0.5, 0.5]。
 
 
-## Padding
+## Padding
 ```python
 paddlex.seg.transforms.Padding(target_size, im_padding_value=[127.5, 127.5, 127.5], label_padding_value=255)
 ```
@@ -100,7 +100,7 @@ paddlex.seg.transforms.Padding(target_size, im_padding_value=[127.5, 127.5, 127.
 * **label_padding_value** (int): 标注图像padding的值。默认值为255(仅在训练时需要设定该参数)。
 
 
-## RandomPaddingCrop
+## RandomPaddingCrop
 ```python
 paddlex.seg.transforms.RandomPaddingCrop(crop_size=512, im_padding_value=[127.5, 127.5, 127.5], label_padding_value=255)
 ```
@@ -111,7 +111,7 @@ paddlex.seg.transforms.RandomPaddingCrop(crop_size=512, im_padding_value=[127.5,
 * **label_padding_value** (int): 标注图像padding的值。默认值为255。
 
 
-## RandomBlur
+## RandomBlur
 ```python
 paddlex.seg.transforms.RandomBlur(prob=0.1)
 ```
@@ -120,7 +120,7 @@ paddlex.seg.transforms.RandomBlur(prob=0.1)
 * **prob** (float): 图像模糊概率。默认为0.1。
 
 
-## RandomRotate
+## RandomRotate
 ```python
 paddlex.seg.transforms.RandomRotate(rotate_range=15, im_padding_value=[127.5, 127.5, 127.5], label_padding_value=255)
 ```
@@ -134,7 +134,7 @@ paddlex.seg.transforms.RandomRotate(rotate_range=15, im_padding_value=[127.5, 12
 * **label_padding_value** (int): 标注图像padding的值。默认为255。
 
 
-## RandomScaleAspect
+## RandomScaleAspect
 ```python
 paddlex.seg.transforms.RandomScaleAspect(min_scale=0.5, aspect_ratio=0.33)
 ```
@@ -146,7 +146,7 @@ paddlex.seg.transforms.RandomScaleAspect(min_scale=0.5, aspect_ratio=0.33)
 * **aspect_ratio** (float): 裁取图像的宽高比范围,非负值,为0时返回原图。默认为0.33。
 
 
-## RandomDistort
+## RandomDistort
 ```python
 paddlex.seg.transforms.RandomDistort(brightness_range=0.5, brightness_prob=0.5, contrast_range=0.5, contrast_prob=0.5, saturation_range=0.5, saturation_prob=0.5, hue_range=18, hue_prob=0.5)
 ```
@@ -167,26 +167,28 @@ paddlex.seg.transforms.RandomDistort(brightness_range=0.5, brightness_prob=0.5,
 * **hue_range** (int): 色调因子的范围。默认为18。
 * **hue_prob** (float): 随机调整色调的概率。默认为0.5。
 
-## ComposedSegTransforms
+## ComposedSegTransforms
 ```python
-paddlex.det.transforms.ComposedSegTransforms(mode, train_crop_shape=[769, 769], mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
+paddlex.det.transforms.ComposedSegTransforms(mode, min_max_size=[400, 600], train_crop_shape=[769, 769], mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], random_horizontal_flip=True)
 ```
 语义分割DeepLab和UNet模型中已经组合好的数据处理流程,开发者可以直接使用ComposedSegTransforms,简化手动组合transforms的过程, 该类中已经包含了[RandomHorizontalFlip](#RandomHorizontalFlip)、[ResizeStepScaling](#ResizeStepScaling)、[RandomPaddingCrop](#RandomPaddingCrop)3种数据增强方式,你仍可以通过[add_augmenters函数接口](#add_augmenters)添加新的数据增强方式。  
 ComposedSegTransforms共包括以下几个步骤:
  > 训练阶段:
-> > 1. 随机对图像以0.5的概率水平翻转
-> > 2. 按不同的比例随机Resize原图
+> > 1. 随机对图像以0.5的概率水平翻转,若random_horizontal_flip为False,则跳过此步骤
+> > 2. 按不同的比例随机Resize原图, 处理方式参考[paddlex.seg.transforms.ResizeRangeScaling](#resizerangescaling)。若min_max_size为None,则跳过此步骤
 > > 3. 从原图中随机crop出大小为train_crop_size大小的子图,如若crop出来的图小于train_crop_size,则会将图padding到对应大小
 > > 4. 图像归一化
  > 预测阶段:
+> > 1. 将图像的最长边resize至(min_max_size[0] + min_max_size[1])//2, 短边按比例resize。若min_max_size为None,则跳过此步骤
 > > 1. 图像归一化
 
-
 ### 参数
 * **mode** (str): Transforms所处的阶段,包括`train', 'eval'或'test'
-* **train_crop_size** (list): 训练过程中随机Crop和Resize后(验证或预测过程中不需配置该参数,自动使用原图大小),输入到模型中图像的大小(与原图大小无关,根据上述几个步骤,会将原图处理成相应大小输入给模型训练), 默认[769, 769]
+* **min_max_size**(list): 用于对图像进行resize,具体作用参见上述步骤。
+* **train_crop_size** (list): 训练过程中随机裁剪原图用于训练,具体作用参见上述步骤。此参数仅在mode为`train`时生效。
 * **mean** (list): 图像均值, 默认为[0.485, 0.456, 0.406]。
 * **std** (list): 图像方差,默认为[0.229, 0.224, 0.225]。
+* **random_horizontal_flip**(bool): 数据增强,是否随机水平翻转图像,此参数仅在mode为`train`时生效。
 
 ### 添加数据增强方式
 ```python

+ 40 - 87
docs/apis/visualize.md

@@ -1,33 +1,59 @@
-# 可视化-visualize
+# 预测结果可视化
+
 PaddleX提供了一系列模型预测和结果分析的可视化函数。
 
-## 目标检测/实例分割预测结果可视化
+## paddlex.det.visualize
+> **目标检测/实例分割预测结果可视化**  
 ```
 paddlex.det.visualize(image, result, threshold=0.5, save_dir='./')
 ```
 将目标检测/实例分割模型预测得到的Box框和Mask在原图上进行可视化。
 
 ### 参数
-> * **image** (str): 原图文件路径。  
+> * **image** (str|np.ndarray): 原图文件路径或numpy数组(HWC排列,BGR格式)
 > * **result** (str): 模型预测结果。
 > * **threshold**(float): score阈值,将Box置信度低于该阈值的框过滤不进行可视化。默认0.5
 > * **save_dir**(str): 可视化结果保存路径。若为None,则表示不保存,该函数将可视化的结果以np.ndarray的形式返回;若设为目录路径,则将可视化结果保存至该目录下。默认值为'./'。
 
 ### 使用示例
-> 点击下载如下示例中的[模型](https://bj.bcebos.com/paddlex/models/xiaoduxiong_epoch_12.tar.gz)和[测试图片](https://bj.bcebos.com/paddlex/datasets/xiaoduxiong.jpeg)
+> 点击下载如下示例中的[模型](https://bj.bcebos.com/paddlex/models/xiaoduxiong_epoch_12.tar.gz)
 ```
 import paddlex as pdx
 model = pdx.load_model('xiaoduxiong_epoch_12')
-result = model.predict('xiaoduxiong.jpeg')
-pdx.det.visualize('xiaoduxiong.jpeg', result, save_dir='./')
+result = model.predict('./xiaoduxiong_epoch_12/xiaoduxiong.jpeg')
+pdx.det.visualize('./xiaoduxiong_epoch_12/xiaoduxiong.jpeg', result, save_dir='./')
 # 预测结果保存在./visualize_xiaoduxiong.jpeg
 ```
+## paddlex.seg.visualize
+> **语义分割模型预测结果可视化**  
+```
+paddlex.seg.visualize(image, result, weight=0.6, save_dir='./')
+```
+将语义分割模型预测得到的Mask在原图上进行可视化。
 
-## 目标检测/实例分割准确率-召回率可视化
+### 参数
+> * **image** (str|np.ndarray): 原图文件路径或numpy数组(HWC排列,BGR格式)。  
+> * **result** (str): 模型预测结果。
+> * **weight**(float): mask可视化结果与原图权重因子,weight表示原图的权重。默认0.6。
+> * **save_dir**(str): 可视化结果保存路径。若为None,则表示不保存,该函数将可视化的结果以np.ndarray的形式返回;若设为目录路径,则将可视化结果保存至该目录下。默认值为'./'。
+
+### 使用示例
+> 点击下载如下示例中的[模型](https://bj.bcebos.com/paddlex/models/cityscape_deeplab.tar.gz)和[测试图片](https://bj.bcebos.com/paddlex/datasets/city.png)
+```
+import paddlex as pdx
+model = pdx.load_model('cityscape_deeplab')
+result = model.predict('city.png')
+pdx.det.visualize('city.png', result, save_dir='./')
+# 预测结果保存在./visualize_city.png
+```
+
+## paddlex.det.draw_pr_curve
+> **目标检测/实例分割准确率-召回率可视化**  
 ```
 paddlex.det.draw_pr_curve(eval_details_file=None, gt=None, pred_bbox=None, pred_mask=None, iou_thresh=0.5, save_dir='./')
 ```
 将目标检测/实例分割模型评估结果中各个类别的准确率和召回率的对应关系进行可视化,同时可视化召回率和置信度阈值的对应关系。
+> 注:PaddleX在训练过程中保存的模型目录中,均包含`eval_result.json`文件,可将此文件路径传给`eval_details_file`参数,设定`iou_threshold`即可得到对应模型在验证集上的PR曲线图。
 
 ### 参数
 > * **eval_details_file** (str): 模型评估结果的保存路径,包含真值信息和预测结果。默认值为None。
@@ -73,29 +99,9 @@ pdx.det.draw_pr_curve(gt=gt, pred_bbox=bbox, save_dir='./insect')
 预测框的各个类别的准确率和召回率的对应关系、召回率和置信度阈值的对应关系可视化如下:
 ![](./images/insect_bbox_pr_curve(iou-0.5).png)
 
-## 语义分割预测结果可视化
-```
-paddlex.seg.visualize(image, result, weight=0.6, save_dir='./')
-```
-将语义分割模型预测得到的Mask在原图上进行可视化。
-
-### 参数
-> * **image** (str): 原图文件路径。  
-> * **result** (str): 模型预测结果。
-> * **weight**(float): mask可视化结果与原图权重因子,weight表示原图的权重。默认0.6。
-> * **save_dir**(str): 可视化结果保存路径。若为None,则表示不保存,该函数将可视化的结果以np.ndarray的形式返回;若设为目录路径,则将可视化结果保存至该目录下。默认值为'./'。
 
-### 使用示例
-> 点击下载如下示例中的[模型](https://bj.bcebos.com/paddlex/models/cityscape_deeplab.tar.gz)和[测试图片](https://bj.bcebos.com/paddlex/datasets/city.png)
-```
-import paddlex as pdx
-model = pdx.load_model('cityscape_deeplab')
-result = model.predict('city.png')
-pdx.det.visualize('city.png', result, save_dir='./')
-# 预测结果保存在./visualize_city.png
-```
-
-## 模型裁剪比例可视化分析
+## paddlex.slim.visualzie
+> **模型裁剪比例可视化分析**  
 ```
 paddlex.slim.visualize(model, sensitivities_file)
 ```
@@ -114,64 +120,11 @@ pdx.slim.visualize(model, 'mobilenetv2.sensitivities', save_dir='./')
 # 可视化结果保存在./sensitivities.png
 ```
 
-## LIME可解释性结果可视化
-```
-paddlex.interpret.lime(img_file, 
-                       model, 
-                       num_samples=3000, 
-                       batch_size=50,
-                       save_dir='./')
-```
-使用LIME算法将模型预测结果的可解释性可视化。  
-LIME表示与模型无关的局部可解释性,可以解释任何模型。LIME的思想是以输入样本为中心,在其附近的空间中进行随机采样,每个采样通过原模型得到新的输出,这样得到一系列的输入和对应的输出,LIME用一个简单的、可解释的模型(比如线性回归模型)来拟合这个映射关系,得到每个输入维度的权重,以此来解释模型。    
-
-**注意:** 可解释性结果可视化目前只支持分类模型。
-
-### 参数
->* **img_file** (str): 预测图像路径。
->* **model** (paddlex.cv.models): paddlex中的模型。
->* **num_samples** (int): LIME用于学习线性模型的采样数,默认为3000。
->* **batch_size** (int): 预测数据batch大小,默认为50。
->* **save_dir** (str): 可解释性可视化结果(保存为png格式文件)和中间文件存储路径。 
-
-
-### 使用示例
-> 对预测可解释性结果可视化的过程可参见[代码](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/interpret/lime.py)。
-
-
-## NormLIME可解释性结果可视化
-```
-paddlex.interpret.normlime(img_file, 
-                           model, 
-                           dataset=None,
-                           num_samples=3000, 
-                           batch_size=50,
-                           save_dir='./',
-                           normlime_weights_file=None)
-```
-使用NormLIME算法将模型预测结果的可解释性可视化。
-NormLIME是利用一定数量的样本来出一个全局的解释。由于NormLIME计算量较大,此处采用一种简化的方式:使用一定数量的测试样本(目前默认使用所有测试样本),对每个样本进行特征提取,映射到同一个特征空间;然后以此特征做为输入,以模型输出做为输出,使用线性回归对其进行拟合,得到一个全局的输入和输出的关系。之后,对一测试样本进行解释时,使用NormLIME全局的解释,来对LIME的结果进行滤波,使最终的可视化结果更加稳定。
-
-**注意:** 可解释性结果可视化目前只支持分类模型。
-
-### 参数
->* **img_file** (str): 预测图像路径。
->* **model** (paddlex.cv.models): paddlex中的模型。
->* **dataset** (paddlex.datasets): 数据集读取器,默认为None。
->* **num_samples** (int): LIME用于学习线性模型的采样数,默认为3000。
->* **batch_size** (int): 预测数据batch大小,默认为50。
->* **save_dir** (str): 可解释性可视化结果(保存为png格式文件)和中间文件存储路径。
->* **normlime_weights_file** (str): NormLIME初始化文件名,若不存在,则计算一次,保存于该路径;若存在,则直接载入。
-
-**注意:** dataset`读取的是一个数据集,该数据集不宜过大,否则计算时间会较长,但应包含所有类别的数据。NormLIME可解释性结果可视化目前只支持分类模型。
-### 使用示例
-> 对预测可解释性结果可视化的过程可参见[代码](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/interpret/normlime.py)。
-
-
-## 数据预处理/增强过程可视化
+## paddlex.transforms.visualize
+> **数据预处理/增强过程可视化**  
 ```
-paddlex.transforms.visualize(dataset, 
-                             img_count=3, 
+paddlex.transforms.visualize(dataset,
+                             img_count=3,
                              save_dir='vdl_output')
 ```
 对数据预处理/增强中间结果进行可视化。
@@ -183,4 +136,4 @@ paddlex.transforms.visualize(dataset,
 ### 参数
 >* **dataset** (paddlex.datasets): 数据集读取器。
 >* **img_count** (int): 需要进行数据预处理/增强的图像数目。默认为3。
->* **save_dir** (str): 日志保存的路径。默认为'vdl_output'。
+>* **save_dir** (str): 日志保存的路径。默认为'vdl_output'。

+ 1 - 1
docs/appendix/anaconda_install.md

@@ -8,7 +8,7 @@ Anaconda是一个开源的Python发行版本,其包含了conda、Python等180
 
 ### 第二步 安装
 运行下载的安装包(以.exe为后辍),根据引导完成安装, 用户可自行修改安装目录(如下图)
-![](../images/anaconda_windows.png)
+![](images/anaconda_windows.png)
 
 ### 第三步 使用
 - 点击Windows系统左下角的Windows图标,打开:所有程序->Anaconda3/2(64-bit)->Anaconda Prompt  

+ 0 - 367
docs/appendix/datasets.md

@@ -1,367 +0,0 @@
-# 数据集格式说明
-
----
-## 图像分类ImageNet
-
-图像分类ImageNet数据集包含对应多个标签的图像文件夹、标签文件及图像列表文件。
-参考数据文件结构如下:
-```
-./dataset/  # 数据集根目录
-|--labelA  # 标签为labelA的图像目录
-|  |--a1.jpg
-|  |--...
-|  └--...
-|
-|--...
-|
-|--labelZ  # 标签为labelZ的图像目录
-|  |--z1.jpg
-|  |--...
-|  └--...
-|
-|--train_list.txt  # 训练文件列表文件
-|
-|--val_list.txt  # 验证文件列表文件
-|
-└--labels.txt  # 标签列表文件
-
-```
-其中,相应的文件名可根据需要自行定义。
-
-`train_list.txt`和`val_list.txt`文本以空格为分割符分为两列,第一列为图像文件相对于dataset的相对路径,第二列为图像文件对应的标签id(从0开始)。如下所示:
-```
-labelA/a1.jpg 0
-labelZ/z1.jpg 25
-...
-```
-
-`labels.txt`: 每一行为一个单独的类别,相应的行号即为类别对应的id(行号从0开始),如下所示:
-```
-labelA
-labelB
-...
-```
-[点击这里](https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz),下载蔬菜分类分类数据集。  
-在PaddleX中,使用`paddlex.cv.datasets.ImageNet`([API说明](../apis/datasets/classification.html#imagenet))加载分类数据集。
-
-## 目标检测VOC
-目标检测VOC数据集包含图像文件夹、标注信息文件夹、标签文件及图像列表文件。
-参考数据文件结构如下:
-```
-./dataset/  # 数据集根目录
-|--JPEGImages  # 图像目录
-|  |--xxx1.jpg
-|  |--...
-|  └--...
-|
-|--Annotations  # 标注信息目录
-|  |--xxx1.xml
-|  |--...
-|  └--...
-|
-|--train_list.txt  # 训练文件列表文件
-|
-|--val_list.txt  # 验证文件列表文件
-|
-└--labels.txt  # 标签列表文件
-
-```
-其中,相应的文件名可根据需要自行定义。
-
-`train_list.txt`和`val_list.txt`文本以空格为分割符分为两列,第一列为图像文件相对于dataset的相对路径,第二列为标注文件相对于dataset的相对路径。如下所示:
-```
-JPEGImages/xxx1.jpg Annotations/xxx1.xml
-JPEGImages/xxx2.jpg Annotations/xxx2.xml
-...
-```
-
-`labels.txt`: 每一行为一个单独的类别,相应的行号即为类别对应的id(行号从0开始),如下所示:
-```
-labelA
-labelB
-...
-```
-[点击这里](https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz),下载昆虫检测数据集。  
-在PaddleX中,使用`paddlex.cv.datasets.VOCDetection`([API说明](../apis/datasets/detection.html#vocdetection))加载目标检测VOC数据集。
-
-## 目标检测和实例分割COCO
-目标检测和实例分割COCO数据集包含图像文件夹及图像标注信息文件。
-参考数据文件结构如下:
-```
-./dataset/  # 数据集根目录
-|--JPEGImages  # 图像目录
-|  |--xxx1.jpg
-|  |--...
-|  └--...
-|
-|--train.json  # 训练相关信息文件
-|
-└--val.json  # 验证相关信息文件
-
-```
-其中,相应的文件名可根据需要自行定义。
-
-`train.json`和`val.json`存储与标注信息、图像文件相关的信息。如下所示:
-
-```
-{
-  "annotations": [
-    {
-      "iscrowd": 0,
-      "category_id": 1,
-      "id": 1,
-      "area": 33672.0,
-      "image_id": 1,
-      "bbox": [232, 32, 138, 244],
-      "segmentation": [[32, 168, 365, 117, ...]]
-    },
-    ...
-  ],
-  "images": [
-    {
-      "file_name": "xxx1.jpg",
-      "height": 512,
-      "id": 267,
-      "width": 612
-    },
-    ...
-  ]
-  "categories": [
-    {
-      "name": "labelA",
-      "id": 1,
-      "supercategory": "component"
-    }
-  ]
-}
-```
-其中,每个字段的含义如下所示:
-
-| 域名 | 字段名 | 含义 | 数据类型 | 备注 |
-|:-----|:--------|:------------|------|:-----|
-| annotations | id | 标注信息id | int | 从1开始 |
-| annotations | iscrowd      | 标注框是否为一组对象 | int | 只有0、1两种取值 |
-| annotations | category_id  | 标注框类别id | int |  |
-| annotations | area         | 标注框的面积 | float |  |
-| annotations | image_id     | 当前标注信息所在图像的id | int |  |
-| annotations | bbox         | 标注框坐标 | list | 长度为4,分别代表x,y,w,h |
-| annotations | segmentation | 标注区域坐标 | list | list中有至少1个list,每个list由每个小区域坐标点的横纵坐标(x,y)组成 |
-| images          | id                | 图像id | int | 从1开始 |
-| images   | file_name         | 图像文件名 | str |  |
-| images      | height            | 图像高度 | int |  |
-| images       | width             | 图像宽度 | int |  |
-| categories  | id            | 类别id | int | 从1开始 |
-| categories | name          | 类别标签名 | str |  |
-| categories | supercategory | 类别父类的标签名 | str |  |
-
-
-[点击这里](https://bj.bcebos.com/paddlex/datasets/garbage_ins_det.tar.gz),下载垃圾实例分割数据集。  
-在PaddleX中,使用`paddlex.cv.datasets.COCODetection`([API说明](../apis/datasets/detection.html#cocodetection))加载COCO格式数据集。
-
-## 语义分割数据
-语义分割数据集包含原图、标注图及相应的文件列表文件。
-参考数据文件结构如下:
-```
-./dataset/  # 数据集根目录
-|--images  # 原图目录
-|  |--xxx1.png
-|  |--...
-|  └--...
-|
-|--annotations  # 标注图目录
-|  |--xxx1.png
-|  |--...
-|  └--...
-|
-|--train_list.txt  # 训练文件列表文件
-|
-|--val_list.txt  # 验证文件列表文件
-|
-└--labels.txt  # 标签列表
-
-```
-其中,相应的文件名可根据需要自行定义。
-
-`train_list.txt`和`val_list.txt`文本以空格为分割符分为两列,第一列为图像文件相对于dataset的相对路径,第二列为标注图像文件相对于dataset的相对路径。如下所示:
-```
-images/xxx1.png annotations/xxx1.png
-images/xxx2.png annotations/xxx2.png
-...
-```
-
-`labels.txt`: 每一行为一个单独的类别,相应的行号即为类别对应的id(行号从0开始),如下所示:
-```
-background
-labelA
-labelB
-...
-```
-
-标注图像为单通道图像,像素值即为对应的类别,像素标注类别需要从0开始递增(一般第一个类别为`background`),
-例如0,1,2,3表示有4种类别,标注类别最多为256类。其中可以指定特定的像素值用于表示该值的像素不参与训练和评估(默认为255)。
-
-[点击这里](https://bj.bcebos.com/paddlex/datasets/optic_disc_seg.tar.gz),下载视盘语义分割数据集。  
-在PaddleX中,使用`paddlex.cv.datasets.SegReader`([API说明](../apis/datasets/semantic_segmentation.html#segdataset))加载语义分割数据集。
-
-
-## 图像分类EasyDataCls
-
-图像分类EasyDataCls数据集包含存放图像和json文件的文件夹、标签文件及图像列表文件。
-参考数据文件结构如下:
-```
-./dataset/  # 数据集根目录
-|--easydata  # 存放图像和json文件的文件夹
-|  |--0001.jpg
-|  |--0001.json
-|  |--0002.jpg
-|  |--0002.json
-|  └--...
-|
-|--train_list.txt  # 训练文件列表文件
-|
-|--val_list.txt  # 验证文件列表文件
-|
-└--labels.txt  # 标签列表文件
-
-```
-其中,图像文件名应与json文件名一一对应。   
-
-每个json文件存储于`labels`相关的信息。如下所示:
-```
-{"labels": [{"name": "labelA"}]}
-```
-其中,`name`字段代表对应图像的类别。  
-
-`train_list.txt`和`val_list.txt`文本以空格为分割符分为两列,第一列为图像文件相对于dataset的相对路径,第二列为json文件相对于dataset的相对路径。如下所示:
-```
-easydata/0001.jpg easydata/0001.json
-easydata/0002.jpg easydata/0002.json
-...
-```
-
-`labels.txt`: 每一行为一个单独的类别,相应的行号即为类别对应的id(行号从0开始),如下所示:
-```
-labelA
-labelB
-...
-```
-[点击这里](https://ai.baidu.com/easydata/),可以标注图像分类EasyDataCls数据集。  
-在PaddleX中,使用`paddlex.cv.datasets.EasyDataCls`([API说明](../apis/datasets/classification.html#easydatacls))加载分类数据集。
-
-
-## 目标检测和实例分割EasyDataDet
-
-目标检测和实例分割EasyDataDet数据集包含存放图像和json文件的文件夹、标签文件及图像列表文件。
-参考数据文件结构如下:
-```
-./dataset/  # 数据集根目录ß
-|--easydata  # 存放图像和json文件的文件夹
-|  |--0001.jpg
-|  |--0001.json
-|  |--0002.jpg
-|  |--0002.json
-|  └--...
-|
-|--train_list.txt  # 训练文件列表文件
-|
-|--val_list.txt  # 验证文件列表文件
-|
-└--labels.txt  # 标签列表文件
-
-```
-其中,图像文件名应与json文件名一一对应。   
-
-每个json文件存储于`labels`相关的信息。如下所示:
-```
-"labels": [{"y1": 18, "x2": 883, "x1": 371, "y2": 404, "name": "labelA", 
-            "mask": "kVfc0`0Zg0<F7J7I5L5K4L4L4L3N3L3N3L3N2N3M2N2N2N2N2N2N1O2N2O1N2N1O2O1N101N1O2O1N101N10001N101N10001N10001O0O10001O000O100000001O0000000000000000000000O1000001O00000O101O000O101O0O101O0O2O0O101O0O2O0O2N2O0O2O0O2N2O1N1O2N2N2O1N2N2N2N2N2N2M3N3M2M4M2M4M3L4L4L4K6K5J7H9E\\iY1"}, 
-           {"y1": 314, "x2": 666, "x1": 227, "y2": 676, "name": "labelB",
-            "mask": "mdQ8g0Tg0:G8I6K5J5L4L4L4L4M2M4M2M4M2N2N2N3L3N2N2N2N2O1N1O2N2N2O1N1O2N2O0O2O1N1O2O0O2O0O2O001N100O2O000O2O000O2O00000O2O000000001N100000000000000000000000000000000001O0O100000001O0O10001N10001O0O101N10001N101N101N101N101N2O0O2N2O0O2N2N2O0O2N2N2N2N2N2N2N2N2N3L3N2N3L3N3L4M2M4L4L5J5L5J7H8H;BUcd<"}, 
-           ...]}
-```
-其中,list中的每个元素代表一个标注信息,标注信息中字段的含义如下所示: 
-
-| 字段名 | 含义 | 数据类型 | 备注 |
-|:--------|:------------|------|:-----|
-| x1 | 标注框左下角横坐标 | int | |
-| y1 | 标注框左下角纵坐标 | int | |
-| x2 | 标注框右上角横坐标 | int | |
-| y2 | 标注框右上角纵坐标 | int | |
-| name | 标注框中物体类标 | str | |
-| mask | 分割区域布尔型numpy编码后的字符串 | str | 该字段可以不存在,当不存在时只能进行目标检测 |
-
-`train_list.txt`和`val_list.txt`文本以空格为分割符分为两列,第一列为图像文件相对于dataset的相对路径,第二列为json文件相对于dataset的相对路径。如下所示:
-```
-easydata/0001.jpg easydata/0001.json
-easydata/0002.jpg easydata/0002.json
-...
-```
-
-`labels.txt`: 每一行为一个单独的类别,相应的行号即为类别对应的id(行号从0开始),如下所示:
-```
-labelA
-labelB
-...
-```
-
-[点击这里](https://ai.baidu.com/easydata/),可以标注图像分类EasyDataDet数据集。  
-在PaddleX中,使用`paddlex.cv.datasets.EasyDataDet`([API说明](../apis/datasets/detection.html#easydatadet))加载分类数据集。
-
-## 语义分割EasyDataSeg
-
-语义分割EasyDataSeg数据集包含存放图像和json文件的文件夹、标签文件及图像列表文件。
-参考数据文件结构如下:
-```
-./dataset/  # 数据集根目录ß
-|--easydata  # 存放图像和json文件的文件夹
-|  |--0001.jpg
-|  |--0001.json
-|  |--0002.jpg
-|  |--0002.json
-|  └--...
-|
-|--train_list.txt  # 训练文件列表文件
-|
-|--val_list.txt  # 验证文件列表文件
-|
-└--labels.txt  # 标签列表文件
-
-```
-其中,图像文件名应与json文件名一一对应。   
-
-每个json文件存储于`labels`相关的信息。如下所示:
-```
-"labels": [{"y1": 18, "x2": 883, "x1": 371, "y2": 404, "name": "labelA", 
-            "mask": "kVfc0`0Zg0<F7J7I5L5K4L4L4L3N3L3N3L3N2N3M2N2N2N2N2N2N1O2N2O1N2N1O2O1N101N1O2O1N101N10001N101N10001N10001O0O10001O000O100000001O0000000000000000000000O1000001O00000O101O000O101O0O101O0O2O0O101O0O2O0O2N2O0O2O0O2N2O1N1O2N2N2O1N2N2N2N2N2N2M3N3M2M4M2M4M3L4L4L4K6K5J7H9E\\iY1"}, 
-           {"y1": 314, "x2": 666, "x1": 227, "y2": 676, "name": "labelB",
-            "mask": "mdQ8g0Tg0:G8I6K5J5L4L4L4L4M2M4M2M4M2N2N2N3L3N2N2N2N2O1N1O2N2N2O1N1O2N2O0O2O1N1O2O0O2O0O2O001N100O2O000O2O000O2O00000O2O000000001N100000000000000000000000000000000001O0O100000001O0O10001N10001O0O101N10001N101N101N101N101N2O0O2N2O0O2N2N2O0O2N2N2N2N2N2N2N2N2N3L3N2N3L3N3L4M2M4L4L5J5L5J7H8H;BUcd<"}, 
-           ...]}
-```
-其中,list中的每个元素代表一个标注信息,标注信息中字段的含义如下所示: 
-
-| 字段名 | 含义 | 数据类型 | 备注 |
-|:--------|:------------|------|:-----|
-| x1 | 标注框左下角横坐标 | int | |
-| y1 | 标注框左下角纵坐标 | int | |
-| x2 | 标注框右上角横坐标 | int | |
-| y2 | 标注框右上角纵坐标 | int | |
-| name | 标注框中物体类标 | str | |
-| mask | 分割区域布尔型numpy编码后的字符串 | str | 该字段必须存在 |
-
-`train_list.txt`和`val_list.txt`文本以空格为分割符分为两列,第一列为图像文件相对于dataset的相对路径,第二列为json文件相对于dataset的相对路径。如下所示:
-```
-easydata/0001.jpg easydata/0001.json
-easydata/0002.jpg easydata/0002.json
-...
-```
-
-`labels.txt`: 每一行为一个单独的类别,相应的行号即为类别对应的id(行号从0开始),如下所示:
-```
-labelA
-labelB
-...
-```
-
-[点击这里](https://ai.baidu.com/easydata/),可以标注图像分类EasyDataSeg数据集。  
-在PaddleX中,使用`paddlex.cv.datasets.EasyDataSeg`([API说明](../apis/datasets/semantic_segmentation.html#easydataseg))加载分类数据集。
-

+ 0 - 28
docs/appendix/how_to_convert_dataset.md

@@ -1,28 +0,0 @@
-# 数据集转换
-
-当前PaddleX GUI支持ImageNet格式的图像分类数据集、VOC格式的目标检测数据集、COCO格式的实例分割数据集、Seg格式的语义分割的数据集,当使用LabelMe、EasyData、标注精灵这3个工具标注数据时,PaddleX提供了相应接口可将数据转换成与PaddleX GUI想适配的数据集,使用方式如下所示:
-
-```python
-import paddlex as pdx
-
-# 该接口实现LabelMe数据集到VOC数据集的转换。
-# image_dir为图像文件存放的路径。
-# json_dir为与每张图像对应的json文件的存放路径。
-# dataset_save_dir为转换后数据集存放路径。
-pdx.tools.labelme2voc(image_dir='labelme_imgs',
-                      json_dir='labelme_jsons',
-                      dataset_save_dir='voc_dataset')
-```
-
-可替换labelme2voc实现不同数据集间的转换,目前提供的转换接口如下:  
-
-| 接口      | 转换关系 |
-| :-------- | :------- |
-| labelme2voc  | LabelMe数据集转换为VOC数据集   |
-| labelme2coco  | LabelMe数据集转换为COCO数据集   |
-| labelme2seg  | LabelMe数据集转换为Seg数据集  |
-| easydata2imagenet | EasyData数据集转换为ImageNet数据集  |
-| easydata2voc | EasyData数据集转换为VOC数据集  |
-| easydata2coco | EasyData数据集转换为COCO数据集  |
-| easydata2seg | EasyData数据集转换为Seg数据集  |
-| jingling2seg | 标注精灵数据集转换为Seg数据集  |

+ 0 - 0
docs/images/anaconda_windows.png → docs/appendix/images/anaconda_windows.png


+ 0 - 0
docs/images/cls_eval.png → docs/appendix/images/cls_eval.png


+ 0 - 0
docs/images/cls_train.png → docs/appendix/images/cls_train.png


+ 0 - 0
docs/images/faster_eval.png → docs/appendix/images/faster_eval.png


+ 0 - 0
docs/images/faster_train.png → docs/appendix/images/faster_train.png


+ 0 - 0
docs/images/lime.png → docs/appendix/images/lime.png


BIN
docs/appendix/images/mask_eval.png


+ 0 - 0
docs/images/mask_train.png → docs/appendix/images/mask_train.png


BIN
docs/appendix/images/normlime.png


+ 0 - 0
docs/images/seg_eval.png → docs/appendix/images/seg_eval.png


+ 0 - 0
docs/images/seg_train.png → docs/appendix/images/seg_train.png


+ 0 - 0
docs/images/voc_eval.png → docs/appendix/images/voc_eval.png


+ 0 - 0
docs/images/yolo_train.png → docs/appendix/images/yolo_train.png


+ 0 - 2
docs/appendix/index.rst

@@ -11,6 +11,4 @@
    metrics.md
    interpret.md
    parameters.md
-   how_to_convert_dataset.md
-   datasets.md
 

+ 5 - 5
docs/appendix/interpret.md

@@ -13,7 +13,7 @@ LIME全称Local interpretable model-agnostic explanations,表示一种与模
 LIME的使用方式可参见[代码示例](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/interpret/lime.py)和[api介绍](../apis/visualize.html#lime)。在使用时,参数中的`num_samples`设置尤为重要,其表示上述步骤2中的随机采样的个数,若设置过小会影响可解释性结果的稳定性,若设置过大则将在上述步骤3耗费较长时间;参数`batch_size`则表示在计算上述步骤3时,预测的batch size,若设置过小将在上述步骤3耗费较长时间,而上限则根据机器配置决定。  
 
 最终LIME可解释性算法的可视化结果如下所示:  
-![](../images/lime.png)  
+![](images/lime.png)  
 图中绿色区域代表起正向作用的超像素,红色区域代表起反向作用的超像素,"First n superpixels"代表前n个权重比较大的超像素(由上述步骤5计算所得结果)。
 
 
@@ -31,12 +31,12 @@ NormLIME是在LIME上的改进,LIME的解释是局部性的,是针对当前
         预测的`label`为输出,构建逻辑回归函数`regression_func`。  
     (2) 由`regression_func`可获得每个聚类中心不同类别下的权重,并对权重进行归一化。  
 3. 使用Kmeans模型获取需要可视化图像的每个超像素的聚类中心。  
-4. 对需要可视化的图像的超像素进行随机遮掩构成新的图像。   
+4. 对需要可视化的图像的超像素进行随机遮掩构成新的图像。  
 5. 对每张构造的图像使用预测模型预测label。  
-6. 根据normlime的权重信息,每个超像素可获不同的权重,选取最高的权重为最终的权重,以此来解释模型。   
+6. 根据normlime的权重信息,每个超像素可获不同的权重,选取最高的权重为最终的权重,以此来解释模型。  
 
 NormLIME的使用方式可参见[代码示例](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/interpret/normlime.py)和[api介绍](../apis/visualize.html#normlime)。在使用时,参数中的`num_samples`设置尤为重要,其表示上述步骤2中的随机采样的个数,若设置过小会影响可解释性结果的稳定性,若设置过大则将在上述步骤3耗费较长时间;参数`batch_size`则表示在计算上述步骤3时,预测的batch size,若设置过小将在上述步骤3耗费较长时间,而上限则根据机器配置决定;而`dataset`则是由测试集或验证集构造的数据。  
 
 最终NormLIME可解释性算法的可视化结果如下所示:  
-![](../images/normlime.png)  
-图中绿色区域代表起正向作用的超像素,红色区域代表起反向作用的超像素,"First n superpixels"代表前n个权重比较大的超像素(由上述步骤5计算所得结果)。图中最后一行代表把LIME和NormLIME对应超像素权重相乘的结果。
+![](images/normlime.png)  
+图中绿色区域代表起正向作用的超像素,红色区域代表起反向作用的超像素,"First n superpixels"代表前n个权重比较大的超像素(由上述步骤5计算所得结果)。图中最后一行代表把LIME和NormLIME对应超像素权重相乘的结果。

+ 12 - 12
docs/appendix/metrics.md

@@ -6,7 +6,7 @@ PaddleX在模型训练、评估过程中,都会有相应的日志和指标反
 
 PaddleX所有模型在训练过程中,输出的日志信息都包含了6个通用的统计信息,用于辅助用户进行模型训练,例如**分割模型**的训练日志,如下图所示。
 
-![](../images/seg_train.png)
+![](images/seg_train.png)
 
 各字段含义如下:
 
@@ -26,7 +26,7 @@ PaddleX所有模型在训练过程中,输出的日志信息都包含了6个通
 
 PaddleX所有模型在训练过程中会根据用户设定的`save_interval_epochs`参数,每间隔一定轮数进行评估和保存。例如**分类模型**的评估日志,如下图所示。
 
-![](../images/cls_eval.png)
+![](images/cls_eval.png)
 
 上图中第1行表明验证数据集中样本数为240,需要迭代8步才能评估完所有验证数据;第5行用于表明第2轮的模型已经完成保存操作;第6行则表明当前保存的模型中,第2轮的模型在验证集上指标最优(分类任务看`acc1`,此时`acc1`值为0.258333),最优模型会保存在`best_model`目录中。
 
@@ -38,7 +38,7 @@ PaddleX所有模型在训练过程中会根据用户设定的`save_interval_epoc
 
 > 注: acck准确率是针对一张图片进行计算的:把模型在各个类别上的预测得分按从高往低进行排序,取出前k个预测类别,若这k个预测类别包含了真值类,则认为该图片分类正确。
 
-![](../images/cls_train.png)
+![](images/cls_train.png)
 
 
 上图中第1行中的`acc1`表示参与当前迭代步数的训练样本的平均top1准确率,值越高代表模型越优;`acc5`表示参与当前迭代步数的训练样本的平均top5(若类别数n少于5,则为topn)准确率,值越高代表模型越优。第4行中的`loss`表示整个训练集的平均损失函数值,`acc1`表示整个训练集的平均top1准确率,`acc5`表示整个训练集的平均top5准确率。
@@ -46,7 +46,7 @@ PaddleX所有模型在训练过程中会根据用户设定的`save_interval_epoc
 
 ### 评估日志字段
 
-![](../images/cls_eval.png)
+![](images/cls_eval.png)
 
 上图中第3行中的`acc1`表示整个验证集的平均top1准确率,`acc5`表示整个验证集的平均top5准确率。
 
@@ -59,7 +59,7 @@ PaddleX所有模型在训练过程中会根据用户设定的`save_interval_epoc
 
 YOLOv3的训练日志只包括训练通用统计信息(见上文训练通用统计信息)。
 
-![](../images/yolo_train.png)
+![](images/yolo_train.png)
 
 上图中第5行`loss`表示整个训练集的平均损失函数loss值。
 
@@ -75,7 +75,7 @@ FasterRCNN的训练日志除了通用统计信息外,还包括`loss_cls`、`lo
 | loss_rpn_bbox      | RPN子网络中检测框回归损失函数值  |
 | loss              | 所有子网络损失函数值之和          |
 
-![](../images/faster_train.png)
+![](images/faster_train.png)
 
 上图中第1行`loss`, `loss_cls`、`loss_bbox`、`loss_rpn_clss`、`loss_rpn_bbox`都是参与当前迭代步数的训练样本的损失值,而第7行是针整个训练集的损失函数值。
 
@@ -93,7 +93,7 @@ MaskRCNN的训练日志除了通用统计信息外,还包括`loss_cls`、`loss
 | loss_rpn_bbox      | RPN子网络中检测框回归损失函数值  |
 | loss              | 所有子网络损失函数值之和          |
 
-![](../images/mask_train.png)
+![](images/mask_train.png)
 
 上图中第1行`loss`, `loss_cls`、`loss_bbox`、`loss_mask`、`loss_rpn_clss`、`loss_rpn_bbox`都是参与当前迭代步数的训练样本的损失值,而第7行是针整个训练集的损失函数值。
 
@@ -103,7 +103,7 @@ MaskRCNN的训练日志除了通用统计信息外,还包括`loss_cls`、`loss
 
 #### VOC评估标准
 
-![](../images/voc_eval.png)
+![](images/voc_eval.png)
 
 > 注:`map`为平均准确率的平均值,即IoU(Intersection Over Union)取0.5时各个类别的准确率-召回率曲线下面积的平均值。
 
@@ -115,11 +115,11 @@ MaskRCNN的训练日志除了通用统计信息外,还包括`loss_cls`、`loss
 
 COCO格式的数据集不仅可以用于训练目标检测模型,也可以用于训练实例分割模型。在目标检测中,PaddleX主要反馈针对检测框的`bbox_mmAP`指标;在实例分割中,还包括针对Mask的`seg_mmAP`指标。如下所示,第一张日志截图为目标检测的评估结果,第二张日志截图为实例分割的评估结果。
 
-![](../images/faster_eval.png)
+![](images/faster_eval.png)
 
 上图中红框标注的`bbox_mmap`表示整个验证集的检测框平均准确率平均值。
 
-![](../images/mask_eval.png)
+![](images/mask_eval.png)
 上图中红框标注的`bbox_mmap`和`seg_mmap`分别表示整个验证集的检测框平均准确率平均值、Mask平均准确率平均值。
 
 ## 分割特有统计信息
@@ -128,7 +128,7 @@ COCO格式的数据集不仅可以用于训练目标检测模型,也可以用
 
 语义分割的训练日志只包括训练通用统计信息(见上文训练通用统计信息)。
 
-![](../images/seg_train.png)
+![](images/seg_train.png)
 
 ### 评估日志字段
 
@@ -142,4 +142,4 @@ COCO格式的数据集不仅可以用于训练目标检测模型,也可以用
 | category_acc       | 各类别的准确率,即各类别预测正确的像素数/预测为该类别的总像素数  |
 | kappa      | kappa系数,用于一致性检验  |
 
-![](../images/seg_eval.png)
+![](images/seg_eval.png)

+ 50 - 34
docs/appendix/parameters.md

@@ -5,53 +5,69 @@ PaddleX所有训练接口中,内置的参数均为根据单GPU卡相应batch_s
 ## 1.Epoch数的调整
 Epoch数是模型训练过程,迭代的轮数,用户可以设置较大的数值,根据模型迭代过程在验证集上的指标表现,来判断模型是否收敛,进而提前终止训练。此外也可以使用`train`接口中的`early_stop`策略,模型在训练过程会自动判断模型是否收敛自动中止。
 
-## 2.Batch Size的调整
-Batch Size指模型在训练过程中,一次性处理的样本数量, 如若使用多卡训练, batch_size会均分到各张卡上(因此需要让batch size整除卡数)。这个参数跟机器的显存/内存高度相关,`batch_size`越高,所消耗的显存/内存就越高。PaddleX在各个`train`接口中均配置了默认的batch size,如若用户调整batch size,则也注意需要对应调整其它参数,如下表所示展示YOLOv3在训练时的参数配置
+## 2.batch_size和learning_rate
 
-|       参数       |     默认值    |      调整比例       |      示例     |
-|:---------------- | :------------ | :------------------ | :------------ |
-| train_batch_size |      8        |   调整为 8*alpha    |      16       |
-| learning_rate    |    1.0/8000   |   调整为 alpha/8000 |    2.0/8000   |
-| warmup_steps     |    1000       |   调整为 1000/alpha<br>(该参数也可以自行根据数据情况调整) |     500       |
-| lr_decay_epochs  | [213, 240]    |   不变              |   [213, 240]  |
+> - Batch Size指模型在训练过程中,一次性处理的样本数量
+> - 如若使用多卡训练, batch_size会均分到各张卡上(因此需要让batch size整除卡数)
+> - Batch Size跟机器的显存/内存高度相关,`batch_size`越高,所消耗的显存/内存就越高
+> - PaddleX在各个`train`接口中均配置了默认的batch size(默认针对单GPU卡),如若训练时提示GPU显存不足,则相应调低BatchSize,如若GPU显存高或使用多张GPU卡时,可相应调高BatchSize。
+> - **如若用户调整batch size,则也注意需要对应调整其它参数,特别是train接口中默认的learning_rate值**。如在YOLOv3模型中,默认`train_batch_size`为8,`learning_rate`为0.000125,当用户将模型在2卡机器上训练时,可以将`train_batch_size`调整为16, 那么同时`learning_rate`也可以对应调整为0.000125 * 2 = 0.00025
 
+## 3.warmup_steps和warmup_start_lr
 
-更多训练接口可以参考
-- [分类模型-train](https://paddlex.readthedocs.io/zh_CN/latest/apis/models/classification.html#train)
-- [目标检测检测FasterRCNN-train](https://paddlex.readthedocs.io/zh_CN/latest/apis/models/detection.html#id2)
-- [目标检测YOLOv3-train](https://paddlex.readthedocs.io/zh_CN/latest/apis/models/detection.html#train)
-- [实例分割MaskRCNN-train](https://paddlex.readthedocs.io/zh_CN/latest/apis/models/instance_segmentation.html#train)
-- [语义分割DeepLabv3p-train](https://paddlex.readthedocs.io/zh_CN/latest/apis/models/semantic_segmentation.html#train)
-- [语义分割UNet](https://paddlex.readthedocs.io/zh_CN/latest/apis/models/semantic_segmentation.html#id2)
+在训练模型时,一般都会使用预训练模型,例如检测模型在训练时使用backbone在ImageNet数据集上的预训练权重。但由于在自行训练时,自己的数据与ImageNet数据集存在较大的差异,可能会一开始由于梯度过大使得训练出现问题,因此可以在刚开始训练时,让学习率以一个较小的值,慢慢增长到设定的学习率。因此`warmup_steps`和`warmup_start_lr`就是这个作用,模型开始训练时,学习率会从`warmup_start_lr`开始,在`warmup_steps`个batch数据迭代后线性增长到设定的学习率。
 
-## 关于lr_decay_epoch, warmup_steps等参数的说明
+> 例如YOLOv3的train接口,默认`train_batch_size`为8,`learning_rate`为0.000125, `warmup_steps`为1000, `warmup_start_lr`为0.0;在此参数配置下表示,模型在启动训练后,在前1000个step(每个step表示一个batch的数据,也就是8个样本)内,学习率会从0.0开始线性增长到设定的0.000125。
 
-在PaddleX或其它深度学习模型的训练过程中,经常见到lr_decay_epoch, warmup_steps, warmup_start_lr等参数设置,下面介绍一些这些参数的作用。  
+## 4.lr_decay_epochs和lr_decay_gamma
 
-首先这些参数都是用于控制模型训练过程中学习率的变化方式,例如我们在训练时将learning_rate设为0.1, 通常情况,在模型的训练过程中,学习率一直以0.1不变训练下去, 但为了调出更好的模型效果,我们往往不希望学习率一直保持不变
+`lr_decay_epochs`用于让学习率在模型训练后期逐步衰减,它一般是一个list,如[6, 8, 10],表示学习率在第6个epoch时衰减一次,第8个epoch时再衰减一次,第10个epoch时再衰减一次。每次学习率衰减为之前的学习率*lr_decay_gamma。
 
-### warmup_steps和warmup_start_lr
+> 例如YOLOv3的train接口,默认`num_epochs`为270,`learning_rate`为0.000125, `lr_decay_epochs`为[213, 240],`lr_decay_gamma`为0.1;在此参数配置下表示,模型在启动训练后,在前213个epoch中,训练时使用的学习率为0.000125,在第213至240个epoch之间,训练使用的学习率为0.000125x0.1=0.0000125,在240个epoch之后,使用的学习率为0.000125x0.1x0.1=0.00000125
 
-我们在训练模型时,一般都会使用预训练模型,例如检测模型在训练时使用backbone在ImageNet数据集上的预训练权重。但由于在自行训练时,自己的数据与ImageNet数据集存在较大的差异,可能会一开始由于梯度过大使得训练出现问题,因此可以在刚开始训练时,让学习率以一个较小的值,慢慢增长到设定的学习率。因此`warmup_steps`和`warmup_start_lr`就是这个作用,模型开始训练时,学习率会从`warmup_start_lr`开始,在`warmup_steps`内线性增长到设定的学习率。
+## 5.参数设定时的约束
+根据上述几个参数,可以了解到学习率的变化分为WarmUp热身阶段和Decay衰减阶段,
+> - Wamup热身阶段:随着训练迭代,学习率从较低的值逐渐线性增长至设定的值,以step为单位
+> - Decay衰减阶段:随着训练迭代,学习率逐步衰减,如每次衰减为之前的0.1, 以epoch为单位
+> step与epoch的关系:1个epoch由多个step组成,例如训练样本有800张图像,`train_batch_size`为8, 那么每个epoch都要完整用这800张图片训一次模型,而每个epoch总共包含800//8即100个step
 
-### lr_decay_epochs和lr_decay_gamma
+在PaddleX中,约束warmup必须在Decay之前结束,因此各参数设置需要满足下面条件
+```
+warmup_steps <= lr_decay_epochs[0] * num_steps_each_epoch
+```
+其中`num_steps_each_epoch`计算方式如下,
+```
+num_steps_each_eposh = num_samples_in_train_dataset // train_batch_size
+```
+
+因此,如若你在启动训练时,被提示`warmup_steps should be less than...`时,即表示需要根据上述公式调整你的参数啦,可以调整`lr_decay_epochs`或者是`warmup_steps`。
 
-`lr_decay_epochs`用于让学习率在模型训练后期逐步衰减,它一般是一个list,如[6, 8, 10],表示学习率在第6个epoch时衰减一次,第8个epoch时再衰减一次,第10个epoch时再衰减一次。每次学习率衰减为之前的学习率*lr_decay_gamma
+## 6.如何使用多GPU卡进行训练
+在`import paddlex`前配置环境变量,代码如下
+```
+import os
+os.environ['CUDA_VISIBLE_DEVICES'] = '0' # 使用第1张GPU卡进行训练
+# 注意paddle或paddlex都需要在设置环境变量后再import
+import paddlex as pdx
+```
 
-### Notice
+```
+import os
+os.environ['CUDA_VISIBLE_DEVICES'] = '' # 不使用GPU,使用CPU进行训练
+import paddlex as pdx
+```
 
-在PaddleX中,限制warmup需要在第一个学习率decay衰减前结束,因此要满足下面的公式
 ```
-warmup_steps <= lr_decay_epochs[0] * num_steps_each_epoch
+import os
+os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,3' # 使用第1、2、4张GPU卡进行训练
+import paddlex as pdx
 ```
-其中公式中`num_steps_each_epoch = num_samples_in_train_dataset // train_batch_size`。  
 
->  因此如若在训练时PaddleX提示`warmup_steps should be less than xxx`时,即可根据上述公式来调整你的`lr_decay_epochs`或者是`warmup_steps`使得两个参数满足上面的条件
 
-> - 图像分类模型 [train接口文档](https://paddlex.readthedocs.io/zh_CN/latest/apis/models/classification.html#train)
-> - FasterRCNN [train接口文档](https://paddlex.readthedocs.io/zh_CN/latest/apis/models/detection.html#fasterrcnn)
-> - YOLOv3 [train接口文档](https://paddlex.readthedocs.io/zh_CN/latest/apis/models/detection.html#yolov3)
-> - MaskRCNN [train接口文档](https://paddlex.readthedocs.io/zh_CN/latest/apis/models/instance_segmentation.html#maskrcnn)
-> - DeepLab [train接口文档](https://paddlex.readthedocs.io/zh_CN/latest/apis/models/semantic_segmentation.html#deeplabv3p)
-> - UNet [train接口文档](https://paddlex.readthedocs.io/zh_CN/latest/apis/models/semantic_segmentation.html#unet)
-> - HRNet [train接口文档](https://paddlex.readthedocs.io/zh_CN/latest/apis/models/semantic_segmentation.html#hrnet)
+## 相关模型接口
+
+- 图像分类模型 [train接口](../apis/models/classification.html#train)
+- FasterRCNN [train接口](../apis/models/detection.html#id1)
+- YOLOv3 [train接口](../apis/models/detection.html#train)
+- MaskRCNN [train接口](../apis/models/instance_segmentation.html#train)
+- DeepLabv3p [train接口](../apis/models/semantic_segmentation.html#train)

+ 34 - 0
docs/change_log.md

@@ -0,0 +1,34 @@
+# 更新日志
+
+
+**v1.1.0** 2020.07.12
+
+- 模型更新
+> - 新增语义分割模型HRNet、FastSCNN
+> - 目标检测FasterRCNN、实例分割MaskRCNN新增backbone HRNet
+> - 目标检测/实例分割模型新增COCO数据集预训练模型
+> - 集成X2Paddle,PaddleX所有分类模型和语义分割模型支持导出为ONNX协议
+- 模型部署更新
+> - 模型加密增加支持Windows平台
+> - 新增Jetson、PaddleLite模型部署预测方案
+> - C++部署代码新增batch批预测,并采用OpenMP对预处理进行并行加速
+- 新增2个PaddleX产业案例
+> - [人像分割案例]()
+> - [工业表计读数案例]()
+- 新增数据格式转换功能,LabelMe、精灵标注助手和EasyData平台标注的数据转为PaddleX支持加载的数据格式
+- PaddleX文档更新,优化文档结构
+
+
+**v1.0.0** 2020.05.20
+
+- 增加模型C++部署和Python部署代码
+- 增加模型加密部署方案
+- 增加分类模型的OpenVINO部署方案
+- 增加模型可解释性的接口
+
+
+**v0.1.8** 2020.05.17
+
+- 修复部分代码Bug
+- 新增EasyData平台数据标注格式支持
+- 支持imgaug数据增强库的pixel-level算子

+ 1 - 2
docs/conf.py

@@ -76,5 +76,4 @@ if not on_rtd:  # only import and set the theme if we're building docs locally
 
 html_static_path = ['_static']
 
-html_logo = 'images/paddlex.jpg'
-
+html_logo = 'paddlex.png'

+ 0 - 132
docs/cv_solutions.md

@@ -1,132 +0,0 @@
-# PaddleX视觉方案介绍  
-
-PaddleX针对图像分类、目标检测、实例分割和语义分割4种视觉任务提供了包含模型选择、压缩策略选择、部署方案选择在内的解决方案。用户根据自己的需求选择合适的模型,选择合适的压缩策略来减小模型的计算量和存储体积、加速模型预测推理,最后选择合适的部署方案将模型部署在移动端或者服务器端。
-
-## 模型选择
-
-### 图像分类
-图像分类任务指的是输入一张图片,模型预测图片的类别,如识别为风景、动物、车等。
-
-![](./images/image_classification.png)
-
-对于图像分类任务,针对不同的应用场景,PaddleX提供了百度改进的模型,见下表所示:
-> 表中GPU预测速度是使用PaddlePaddle Python预测接口测试得到(测试GPU型号为Nvidia Tesla P40)。
-> 表中CPU预测速度 (测试CPU型号为)。
-> 表中骁龙855预测速度是使用处理器为骁龙855的手机测试得到。
-> 测速时模型输入大小为224 x 224,Top1准确率为ImageNet-1000数据集上评估所得。
-
-|    模型    |  模型特点 | 存储体积 | GPU预测速度(毫秒) | CPU(x86)预测速度(毫秒) | 骁龙855(ARM)预测速度 (毫秒)| Top1准确率 |
-| :--------- | :------  | :---------- | :-----------| :-------------  | :-------------  |:--- |
-| MobileNetV3_small_ssld | 轻量高速,适用于追求高速的实时移动端场景 | 12.5MB | 7.08837 | - | 6.546 | 71.3.0% |
-| ShuffleNetV2 | 轻量级模型,精度相对偏低,适用于要求更小存储体积的实时移动端场景 | 10.2MB | 15.40 | - | 10.941 | 68.8% |
-| MobileNetV3_large_ssld | 轻量级模型,在存储方面优势不大,在速度和精度上表现适中,适合于移动端场景 | 22.8MB | 8.06651 | - | 19.803 | 79.0% |
-| MobileNetV2 | 轻量级模型,适用于使用GPU预测的移动端场景 | 15.0MB | 5.92667 | - | 23.318| 72.2 % |
-| ResNet50_vd_ssld | 高精度模型,预测时间较短,适用于大多数的服务器端场景 | 103.5MB | 7.79264 | - | - | 82.4% |
-| ResNet101_vd_ssld | 超高精度模型,预测时间相对较长,适用于有大数据量时的服务器端场景 | 180.5MB | 13.34580 | - | -| 83.7% |
-| Xception65 | 超高精度模型,预测时间更长,在处理较大数据量时有较高的精度,适用于服务器端场景 | 161.6MB | 13.87017 | - | - | 80.3% |
-
-包括上述模型,PaddleX支持近20种图像分类模型,其余模型可参考[PaddleX模型库](../appendix/model_zoo.md)
-
-
-### 目标检测
-目标检测任务指的是输入图像,模型识别出图像中物体的位置(用矩形框框出来,并给出框的位置),和物体的类别,如在手机等零件质检中,用于检测外观上的瑕疵等。
-
-![](./images/object_detection.png)
-
-对于目标检测,针对不同的应用场景,PaddleX提供了主流的YOLOv3模型和Faster-RCNN模型,见下表所示
-> 表中GPU预测速度是使用PaddlePaddle Python预测接口测试得到(测试GPU型号为Nvidia Tesla P40)。
-> 表中CPU预测速度 (测试CPU型号为)。
-> 表中骁龙855预测速度是使用处理器为骁龙855的手机测试得到。
-> 测速时YOLOv3的输入大小为608 x 608,FasterRCNN的输入大小为800 x 1333,Box mmAP为COCO2017数据集上评估所得。
-
-|   模型   | 模型特点 | 存储体积  | GPU预测速度 | CPU(x86)预测速度(毫秒) | 骁龙855(ARM)预测速度 (毫秒)| Box mmAP |
-| :------- | :-------  | :---------  | :---------- | :-------------  | :-------------  |:--- |
-| YOLOv3-MobileNetV3_larget | 适用于追求高速预测的移动端场景 | 100.7MB | 143.322 | - | - | 31.6 |
-| YOLOv3-MobileNetV1 | 精度相对偏低,适用于追求高速预测的服务器端场景 | 99.2MB| 15.422 | - | - | 29.3 |
-| YOLOv3-DarkNet53 | 在预测速度和模型精度上都有较好的表现,适用于大多数的服务器端场景| 249.2MB | 42.672 | - | - | 38.9 |
-| FasterRCNN-ResNet50-FPN | 经典的二阶段检测器,预测速度相对较慢,适用于重视模型精度的服务器端场景 | 167.MB | 83.189 | - | -| 37.2 |
-| FasterRCNN-HRNet_W18-FPN | 适用于对图像分辨率较为敏感、对目标细节预测要求更高的服务器端场景 | 115.5MB | 81.592 | - | - | 36 |
-| FasterRCNN-ResNet101_vd-FPN | 超高精度模型,预测时间更长,在处理较大数据量时有较高的精度,适用于服务器端场景 | 244.3MB | 156.097 | - | - | 40.5 |
-
-除上述模型外,YOLOv3和Faster RCNN还支持其他backbone,详情可参考[PaddleX模型库](../appendix/model_zoo.md)
-
-### 实例分割
-在目标检测中,模型识别出图像中物体的位置和物体的类别。而实例分割则是在目标检测的基础上,做了像素级的分类,将框内的属于目标物体的像素识别出来。
-
-![](./images/instance_segmentation.png)
-
-PaddleX目前提供了实例分割MaskRCNN模型,支持5种不同的backbone网络,详情可参考[PaddleX模型库](../appendix/model_zoo.md)
-> 表中GPU预测速度是使用PaddlePaddle Python预测接口测试得到(测试GPU型号为Nvidia Tesla P40)。
-> 表中CPU预测速度 (测试CPU型号为)。
-> 表中骁龙855预测速度是使用处理器为骁龙855的手机测试得到。
-> 测速时MaskRCNN的输入大小为800 x 1333,Box mmAP和Seg mmAP为COCO2017数据集上评估所得。
-
-|  模型 | 模型特点 | 存储体积 | GPU预测速度 | CPU(x86)预测速度(毫秒) | 骁龙855(ARM)预测速度 (毫秒)| Box mmAP | Seg mmAP |
-| :---- | :------- | :---------- | :---------- | :----- | :----- | :--- |:--- |
-| MaskRCNN-HRNet_W18-FPN | 适用于对图像分辨率较为敏感、对目标细节预测要求更高的服务器端场景 | - | - | - | - | 37.0 | 33.4 |
-| MaskRCNN-ResNet50-FPN | 精度较高,适合大多数的服务器端场景| 185.5M | - | - | - | 37.9 | 34.2 |
-| MaskRCNN-ResNet101_vd-FPN | 高精度但预测时间更长,在处理较大数据量时有较高的精度,适用于服务器端场景 | 268.6M | - | - | - | 41.4 | 36.8 |
-
-### 语义分割
-语义分割用于对图像做像素级的分类,应用在人像分类、遥感图像识别等场景。  
-
-![](./images/semantic_segmentation.png)
-
-对于语义分割,PaddleX也针对不同的应用场景,提供了不同的模型选择,如下表所示
-> 表中GPU预测速度是使用PaddlePaddle Python预测接口测试得到(测试GPU型号为Nvidia Tesla P40)。
-> 表中CPU预测速度 (测试CPU型号为)。
-> 表中骁龙855预测速度是使用处理器为骁龙855的手机测试得到。
-> 测速时模型的输入大小为1024 x 2048,mIOU为Cityscapes数据集上评估所得。
-
-| 模型 | 模型特点 | 存储体积 | GPU预测速度 | CPU(x86)预测速度(毫秒) | 骁龙855(ARM)预测速度 (毫秒)| mIOU |
-| :---- | :------- | :---------- | :---------- | :----- | :----- |:--- |
-| DeepLabv3p-MobileNetV2_x1.0 | 轻量级模型,适用于移动端场景| - | - | - | 69.8% |
-| HRNet_W18_Small_v1 | 轻量高速,适用于移动端场景 | - | - | - | - |
-| FastSCNN | 轻量高速,适用于追求高速预测的移动端或服务器端场景 | - | - | - | 69.64 |
-| HRNet_W18 | 高精度模型,适用于对图像分辨率较为敏感、对目标细节预测要求更高的服务器端场景| - | - | - | 79.36 |
-| DeepLabv3p-Xception65 | 高精度但预测时间更长,在处理较大数据量时有较高的精度,适用于服务器且背景复杂的场景| - | - | - | 79.3% |
-
-## 压缩策略选择
-
-PaddleX提供包含模型剪裁、定点量化的模型压缩策略来减小模型的计算量和存储体积,加快模型部署后的预测速度。使用不同压缩策略在图像分类、目标检测和语义分割模型上的模型精度和预测速度详见以下内容,用户可以选择根据自己的需求选择合适的压缩策略,进一步优化模型的性能。
-
-| 压缩策略 | 策略特点 |
-| :---- | :------- |
-| 量化  | 较为显著地减少模型的存储体积,适用于移动端或服务期端TensorRT部署,在移动端对于MobileNet系列模型有明显的加速效果 |
-| 剪裁 | 能够去除冗余的参数,达到显著减少参数计算量和模型体积的效果,提升模型的预测性能,适用于CPU部署或移动端部署(GPU上无明显加速效果) |
-| 先剪裁后量化 | 可以进一步提升模型的预测性能,适用于移动端或服务器端TensorRT部署 |
-
-### 性能对比
-
-* 表中各指标的格式为XXX/YYY,XXX表示未采取压缩策略时的指标,YYY表示压缩后的指标
-* 分类模型的准确率指的是ImageNet-1000数据集上的Top1准确率(模型输入大小为224x224),检测模型的准确率指的是COCO2017数据集上的mmAP(模型输入大小为608x608),分割模型的准确率指的是Cityscapes数据集上mIOU(模型输入大小为769x769)
-* 量化策略中,PaddleLiter推理环境为Qualcomm SnapDragon 855 + armv8,速度指标为Thread4耗时
-* 剪裁策略中,PaddleLiter推理环境为Qualcomm SnapDragon 845 + armv8,速度指标为Thread4耗时
-
-
-| 模型 | 压缩策略 | 存储体积(MB) | 准确率(%) | PaddleLite推理耗时(ms) |
-| :--: | :------: | :------: | :----: | :----------------: |
-| MobileNetV1 | 量化 | 17/4.4 | 70.99/70.18 | 10.0811/4.2934 |
-| MobileNetV1 | 剪裁 -30% | 17/12 | 70.99/70.4 | 19.5762/13.6982 |
-| YOLOv3-MobileNetV1 | 量化 | 95/25 | 29.3/27.9 | - |
-| YOLOv3-MobileNetV1 | 剪裁 -51.77% | 95/25 | 29.3/26 | - |
-| Deeplabv3-MobileNetV2 | 量化 | 7.4/1.8 | 63.26/62.03 | 593.4522/484.0018 |
-| FastSCNN | 剪裁 -47.60% | 11/5.7 | 69.64/66.68 | 415.664/291.748 |
-
-更多模型在不同设备上压缩前后的指标对比详见[PaddleX压缩模型库](appendix/slim_model_zoo.md)
-
-压缩策略的具体使用流程详见[模型压缩](tutorials/compress)
-
-**注意:PaddleX中全部图像分类模型和语义分割模型都支持量化和剪裁操作,目标检测仅有YOLOv3支持量化和剪裁操作。**
-
-## 模型部署
-
-PaddleX提供服务器端python部署、服务器端c++部署、服务器端加密部署、OpenVINO部署、移动端部署共5种部署方案,用户可以根据自己的需求选择合适的部署方案,点击以下链接了解部署的具体流程。
-
-| 部署方案 | 部署流程 |
-| :------: | :------: |
-| 服务器端python部署 | [部署流程](tutorials/deploy/deploy_server/deploy_python.html)|
-| 服务器端c++部署 | [部署流程](tutorials/deploy/deploy_server/deploy_cpp/) |
-| 服务器端加密部署 | [部署流程](tutorials/deploy/deploy_server/encryption.html) |
-| OpenVINO部署 | [部署流程](tutorials/deploy/deploy_openvino.html) |
-| 移动端部署 | [部署流程](tutorials/deploy/deploy_lite.html) |

+ 36 - 0
docs/data/annotation.md

@@ -0,0 +1,36 @@
+# 数据标注工具
+
+PaddleX支持图像分类、目标检测、实例分割和语义分割四大视觉领域常见的任务,对于每类视觉任务,都支持了特定的数据格式。PaddleX目前支持了图像分类的ImageNet格式,目标检测的PascalVOC格式,实例分割的MSCOCO格式(MSCOCO也可以用于目标检测)以及语义分割数据格式。
+
+## 常见标注工具
+
+> 图像分类无需标注工具,用户只需以txt文件记录每张图片的类别标签即可。  
+> 对于目标检测、实例分割和语义分割,PaddleX已经与主流的标注工具进行了适配,用户可根据自己的需求,选择以下标注工具进行数据标注。
+
+| 标注工具    | 图像分类 | 目标检测 | 实例分割 | 语义分割 | 安装                                             |
+| :---------  | :------- | :------ | :------  | :------- | :----------------------------------------------- |
+| Labelme     | -        | √        | √        | √        | pip install labelme (本地数据标注)                              |
+| 精灵标注    | √        | √*        | √        | √        | [官网下载](http://www.jinglingbiaozhu.com/) (本地数据标注)     |
+| EasyData    | √        | √        | √        | √        | [Web页面标注](https://ai.baidu.com/easydata/) (需上传数据进行标注)   |
+
+数据标注完成后,参照如下流程,将标注数据转为可用PaddleX模型训练的数据组织格式。
+
+> *注*:精灵标注的目标检测数据可以在工具内部导出为PascalVOC格式,因此paddlex未提供精灵标注数据到PascalVOC格式的转换
+
+
+## 标注数据格式转换
+
+目前所有标注工具,生成的标注文件,均为与原图同名的json格式文件,如`1.jpg`在标注完成后,则会在标注文件保存的目录生成`1.json`文件。转换时参照以下步骤
+> 1. 将所有的原图文件放在同一个目录下,如`pics`目录  
+> 2. 将所有的标注json文件放在同一个目录下,如`annotations`目录  
+> 3. 使用如下命令进行转换
+
+> *注*:精灵标注的目标检测数据可以在工具内部导出为PascalVOC格式,因此paddlex未提供精灵标注数据到PascalVOC格式的转换
+
+```
+paddlex --data_conversion --source labelme --to PascalVOC --pics ./pics --annotations ./annotations --save_dir ./converted_dataset_dir
+```
+> `--source`表示数据标注来源,支持`labelme`、`jingling`和`easydata`(分别表示数据来源于LabelMe,精灵标注助手和EasyData)  
+> `--to`表示数据需要转换成为的格式,支持`ImageNet`(图像分类)、`PascalVOC`(目标检测),`MSCOCO`(实例分割,也可用于目标检测)和`SEG`(语义分割)  
+> `--pics`指定原图所在的目录路径  
+> `--annotations`指定标注文件所在的目录路径

+ 75 - 0
docs/data/format/classification.md

@@ -0,0 +1,75 @@
+# 图像分类ImageNet
+
+## 数据文件夹结构
+
+在PaddleX中,图像分类支持ImageNet数据集格式。数据集目录`data_dir`下包含多个文件夹,每个文件夹中的图像均属于同一个类别,文件夹的命名即为类别名(注意路径中不要包括中文,空格)。
+如下为示例结构
+```
+MyDataset/ # 图像分类数据集根目录
+|--dog/ # 当前文件夹所有图片属于dog类别
+|  |--d1.jpg
+|  |--d2.jpg
+|  |--...
+|  |--...
+|
+|--...
+|
+|--snake/ # 当前文件夹所有图片属于snake类别
+|  |--s1.jpg
+|  |--s2.jpg
+|  |--...
+|  |--...
+```
+
+## 划分训练集验证集
+
+**为了用于训练,我们需要在`MyDataset`目录下准备`train_list.txt`, `val_list.txt`和`labels.txt`三个文件**,分别用于表示训练集列表,验证集列表和类别标签列表。[点击下载图像分类示例数据集](https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz)
+> 注:也可使用PaddleX自带工具,对数据集进行随机划分,**在数据集按照上面格式组织后**,使用如下命令即可快速完成数据集随机划分,其中split指标训练集的比例,剩余的比例用于验证集。
+> ```
+> paddlex --split_dataset --from ImageNet --split 0.8 --save_dir ./splited_dataset_dir
+> ```
+
+**labels.txt**  
+
+labels.txt用于列出所有类别,类别对应行号表示模型训练过程中类别的id(行号从0开始计数),例如labels.txt为以下内容
+```
+dog
+cat
+snake
+```
+即表示该分类数据集中共有3个类别,分别为`dog`,`cat`和`snake`,在模型训练中`dog`对应的类别id为0, `cat`对应1,以此类推
+
+**train_list.txt**  
+
+train_list.txt列出用于训练时的图片集合,与其对应的类别id,示例如下
+```
+dog/d1.jpg 0
+dog/d2.jpg 0
+cat/c1.jpg 1
+... ...
+snake/s1.jpg 2
+```
+其中第一列为相对对`MyDataset`的相对路径,第二列为图片对应类别的类别id
+
+**val_list.txt**  
+
+val_list列出用于验证时的图片集成,与其对应的类别id,格式与train_list.txt一致
+
+## PaddleX数据集加载  
+示例代码如下,
+```
+import paddlex as pdx
+from paddlex.cls import transforms
+train_transforms = transforms.ComposedClsTransforms(mode='train', crop_size=[224, 224])
+eval_transforms = transforms.ComposedClsTransforms(mode='eval', crop_size=[224, 224])
+train_dataset = pdx.datasets.ImageNet(
+                    data_dir='./MyDataset',
+                    file_list='./MyDataset/train_list.txt',
+                    label_list='./MyDataset/labels.txt',
+                    transforms=train_transforms)
+eval_dataset = pdx.datasets.ImageNet(
+                    data_dir='./MyDataset',
+                    file_list='./MyDataset/eval_list.txt',
+                    label_list='./MyDataset/labels.txt',
+                    transforms=eval_transforms)
+```

+ 73 - 0
docs/data/format/detection.md

@@ -0,0 +1,73 @@
+# 目标检测PascalVOC
+
+## 数据集文件夹结构
+
+在PaddleX中,目标检测支持PascalVOC数据集格式。建议用户将数据集按照如下方式进行组织,原图均放在同一目录,如`JPEGImages`,标注的同名xml文件均放在同一目录,如`Annotations`,示例如下
+```
+MyDataset/ # 目标检测数据集根目录
+|--JPEGImages/ # 原图文件所在目录
+|  |--1.jpg
+|  |--2.jpg
+|  |--...
+|  |--...
+|
+|--Annotations/ # 标注文件所在目录
+|  |--1.xml
+|  |--2.xml
+|  |--...
+|  |--...
+```
+
+## 划分训练集验证集
+
+**为了用于训练,我们需要在`MyDataset`目录下准备`train_list.txt`, `val_list.txt`和`labels.txt`三个文件**,分别用于表示训练集列表,验证集列表和类别标签列表。[点击下载目标检测示例数据集](https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz)
+> 注:也可使用PaddleX自带工具,对数据集进行随机划分,**在数据集按照上面格式组织后**,使用如下命令即可快速完成数据集随机划分,其中split指标训练集的比例,剩余的比例用于验证集。
+> ```
+> paddlex --split_dataset --from PascalVOC --pics ./JPEGImages --annotations ./Annotations --split 0.8 --save_dir ./splited_dataset_dir
+> ```
+
+**labels.txt**  
+
+labels.txt用于列出所有类别,类别对应行号表示模型训练过程中类别的id(行号从0开始计数),例如labels.txt为以下内容
+```
+dog
+cat
+snake
+```
+表示该检测数据集中共有3个目标类别,分别为`dog`,`cat`和`snake`,在模型训练中`dog`对应的类别id为0, `cat`对应1,以此类推
+
+**train_list.txt**  
+
+train_list.txt列出用于训练时的图片集合,与其对应的标注文件,示例如下
+```
+JPEGImages/1.jpg Annotations/1.xml
+JPEGImages/2.jpg Annotations/2.xml
+... ...
+```
+其中第一列为原图相对`MyDataset`的相对路径,第二列为标注文件相对`MyDataset`的相对路径
+
+**val_list.txt**  
+
+val_list列出用于验证时的图片集成,与其对应的标注文件,格式与val_list.txt一致
+
+## PaddleX数据集加载  
+示例代码如下,
+```
+import paddlex as pdx
+from paddlex.det import transforms
+
+train_transforms = transforms.ComposedYOLOv3Transforms(mode='train', shape=[608, 608])
+eval_transforms = transforms.ComposedYOLOv3Transforms(mode='eval', shape=[608, 608])
+
+train_dataset = pdx.datasets.VOCDetection(
+                        data_dir='./MyDataset',
+                        file_list='./MyDataset/train_list.txt',
+                        label_list='./MyDataset/labels.txt',
+                        transforms=train_transforms)
+eval_dataset = pdx.datasets.VOCDetection(
+                        data_dir='./MyDataset',
+                        file_list='./MyDataset/val_list.txt',
+                        label_list='MyDataset/labels.txt',
+                        transforms=eval_transforms)
+
+```

+ 12 - 0
docs/data/format/index.rst

@@ -0,0 +1,12 @@
+数据格式说明
+=======================================
+
+
+.. toctree::
+   :maxdepth: 2
+   :caption: 文档目录:
+
+   classification.md
+   detection.md
+   instance_segmentation.md
+   segmentation.md

+ 44 - 0
docs/data/format/instance_segmentation.md

@@ -0,0 +1,44 @@
+# 实例分割MSCOCO
+
+## 数据集文件夹结构
+
+在PaddleX中,实例分割支持MSCOCO数据集格式(MSCOCO格式同样也可以用于目标检测)。建议用户将数据集按照如下方式进行组织,原图均放在同一目录,如JPEGImages,标注文件(如annotations.json)放在与JPEGImages所在目录同级目录下,示例结构如下
+```
+MyDataset/ # 实例分割数据集根目录
+|--JPEGImages/ # 原图文件所在目录
+|  |--1.jpg
+|  |--2.jpg
+|  |--...
+|  |--...
+|
+|--annotations.json # 标注文件所在目录
+```
+
+## 划分训练集验证集
+
+在PaddleX中,为了区分训练集和验证集,在`MyDataset`同级目录,使用不同的json表示数据的划分,例如`train.json`和`val.json`。[点击下载实例分割示例数据集](https://bj.bcebos.com/paddlex/datasets/garbage_ins_det.tar.gz)。
+> 注:也可使用PaddleX自带工具,对数据集进行随机划分,在数据按照上述示例组织结构后,使用如下命令,即可快速完成数据集随机划分,其中split指定训练集的比例,剩余比例用于验证集。
+> ```
+> paddlex --split_dataset --from MSCOCO --pics ./JPEGImages --annotations ./annotations.json --split 0.8 --save_dir ./splited_dataset_dir
+> ```
+
+MSCOCO数据的标注文件采用json格式,用户可使用Labelme, 精灵标注助手或EasyData等标注工具进行标注,参见[数据标注工具](../annotations.md)
+
+## PaddleX加载数据集
+示例代码如下,
+```
+import paddlex as pdx
+from paddlex.det import transforms
+
+train_transforms = transforms.ComposedRCNNTransforms(mode='train', min_max_size=[800, 1333])
+eval_transforms = transforms.ComposedRCNNTransforms(mode='eval', min_max_size=[800, 1333])
+
+train_dataset = pdx.dataset.CocoDetection(
+                    data_dir='./MyDataset/JPEGImages',
+                    ann_file='./MyDataset/train.json',
+                    transforms=train_transforms)
+eval_dataset = pdx.dataset.CocoDetection(
+                    data_dir='./MyDataset/JPEGImages',
+                    ann_file='./MyDataset/val.json',
+                    transforms=eval_transforms)
+```

+ 75 - 0
docs/data/format/segmentation.md

@@ -0,0 +1,75 @@
+# 语义分割Seg
+
+## 数据集文件夹结构
+
+在PaddleX中,**标注文件为png文件**。建议用户将数据集按照如下方式进行组织,原图均放在同一目录,如`JPEGImages`,标注的同名png文件均放在同一目录,如`Annotations`,示例如下
+```
+MyDataset/ # 语义分割数据集根目录
+|--JPEGImages/ # 原图文件所在目录
+|  |--1.jpg
+|  |--2.jpg
+|  |--...
+|  |--...
+|
+|--Annotations/ # 标注文件所在目录
+|  |--1.png
+|  |--2.png
+|  |--...
+|  |--...
+```
+语义分割的标注图像,如1.png,为单通道图像,像素标注类别需要从0开始递增(一般0表示background背景), 例如0, 1, 2, 3表示4种类别,标注类别最多255个类别(其中像素值255不参与训练和评估)。
+
+## 划分训练集验证集
+
+**为了用于训练,我们需要在`MyDataset`目录下准备`train_list.txt`, `val_list.txt`和`labels.txt`三个文件**,分别用于表示训练集列表,验证集列表和类别标签列表。[点击下载语义分割示例数据集](https://bj.bcebos.com/paddlex/datasets/optic_disc_seg.tar.gz)
+> 注:也可使用PaddleX自带工具,对数据集进行随机划分,**在数据集按照上面格式组织后**,使用如下命令即可快速完成数据集随机划分,其中split指标训练集的比例,剩余的比例用于验证集。
+> ```
+> paddlex --split_dataset --from Seg --pics ./JPEGImages --annotations ./Annotations --split 0.8 --save_dir ./splited_dataset_dir
+> ```
+
+**labels.txt**  
+
+labels.txt用于列出所有类别,类别对应行号表示模型训练过程中类别的id(行号从0开始计数),例如labels.txt为以下内容
+```
+backgrond
+human
+car
+```
+表示该检测数据集中共有3个分割类别,分别为`background`,`human`和`car`,在模型训练中`background`对应的类别id为0, `human`对应1,以此类推,如不知具体类别标签,可直接在labels.txt逐行写0,1,2...序列即可。
+
+**train_list.txt**  
+
+train_list.txt列出用于训练时的图片集合,与其对应的标注文件,示例如下
+```
+JPEGImages/1.jpg Annotations/1.png
+JPEGImages/2.jpg Annotations/2.png
+... ...
+```
+其中第一列为原图相对`MyDataset`的相对路径,第二列为标注文件相对`MyDataset`的相对路径
+
+**val_list.txt**  
+
+val_list列出用于验证时的图片集成,与其对应的标注文件,格式与val_list.txt一致
+
+## PaddleX数据集加载  
+
+示例代码如下,
+```
+import paddlex as pdx
+from paddlex.seg import transforms
+
+train_transforms = transforms.ComposedSegTransforms(mode='train', train_crop_size=[512, 512])
+eval_transforms = transforms.ComposedSegTransforms(mode='eval', train_crop_size=[512, 512])
+
+train_dataset = pdx.datasets.SegDataset(
+                        data_dir='./MyDataset',
+                        file_list='./MyDataset/train_list.txt',
+                        label_list='./MyDataset/labels.txt',
+                        transforms=train_transforms)
+eval_dataset = pdx.datasets.SegDataset(
+                        data_dir='./MyDataset',
+                        file_list='./MyDataset/val_list.txt',
+                        label_list='MyDataset/labels.txt',
+                        transforms=eval_transforms)
+
+```

+ 10 - 0
docs/data/index.rst

@@ -0,0 +1,10 @@
+数据准备
+=======================================
+
+
+.. toctree::
+   :maxdepth: 2
+   :caption: 文档目录:
+
+   annotation.md
+   format/index

+ 0 - 2
docs/datasets.md

@@ -1,2 +0,0 @@
-# 数据集格式说明
-该部分内容已迁移至[附录](./appendix/datasets.md)

+ 17 - 0
docs/deploy/export_model.md

@@ -0,0 +1,17 @@
+# 部署模型导出
+
+在服务端部署的模型需要首先将模型导出为inference格式模型,导出的模型将包括`__model__`、`__params__`和`model.yml`三个文名,分别为模型的网络结构,模型权重和模型的配置文件(包括数据预处理参数等等)。在安装完PaddleX后,在命令行终端使用如下命令导出模型到当前目录`inferece_model`下。
+> 可直接下载小度熊分拣模型测试本文档的流程[xiaoduxiong_epoch_12.tar.gz](https://bj.bcebos.com/paddlex/models/xiaoduxiong_epoch_12.tar.gz)
+
+```
+paddlex --export_inference --model_dir=./xiaoduxiong_epoch_12 --save_dir=./inference_model
+```
+
+使用TensorRT预测时,需指定模型的图像输入shape:[w,h]。
+**注**:
+- 分类模型请保持于训练时输入的shape一致。
+- 指定[w,h]时,w和h中间逗号隔开,不允许存在空格等其他字符
+
+```
+paddlex --export_inference --model_dir=./xiaoduxiong_epoch_12 --save_dir=./inference_model --fixed_input_shape=[640,960]
+```

+ 0 - 0
docs/tutorials/deploy/images/encrypt.png → docs/deploy/images/encrypt.png


+ 0 - 0
docs/tutorials/deploy/images/encryption_process.png → docs/deploy/images/encryption_process.png


+ 0 - 0
docs/tutorials/deploy/images/vs2019_step1.png → docs/deploy/images/vs2019_step1.png


+ 0 - 0
docs/tutorials/deploy/images/vs2019_step2.png → docs/deploy/images/vs2019_step2.png


+ 0 - 0
docs/tutorials/deploy/images/vs2019_step3.png → docs/deploy/images/vs2019_step3.png


+ 0 - 0
docs/tutorials/deploy/images/vs2019_step4.png → docs/deploy/images/vs2019_step4.png


+ 0 - 0
docs/tutorials/deploy/images/vs2019_step5.png → docs/deploy/images/vs2019_step5.png


+ 0 - 0
docs/tutorials/deploy/images/vs2019_step6.png → docs/deploy/images/vs2019_step6.png


+ 0 - 0
docs/tutorials/deploy/images/vs2019_step7.png → docs/deploy/images/vs2019_step7.png


+ 0 - 0
docs/tutorials/deploy/images/vs2019_step_encryption.png → docs/deploy/images/vs2019_step_encryption.png


+ 13 - 0
docs/deploy/index.rst

@@ -0,0 +1,13 @@
+模型部署
+=======================================
+
+
+.. toctree::
+   :maxdepth: 2
+   :caption: 文档目录:
+
+   export_model.md
+   server/index
+   nvidia-jetson.md
+   openvino/index
+   paddlelite/index

+ 145 - 0
docs/deploy/nvidia-jetson.md

@@ -0,0 +1,145 @@
+# Nvidia-Jetson开发板
+
+## 说明
+本文档在 `Linux`平台使用`GCC 4.8.5` 和 `GCC 4.9.4`测试过,如果需要使用更高G++版本编译使用,则需要重新编译Paddle预测库,请参考: [NVIDIA Jetson嵌入式硬件预测库源码编译](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html#id12)。
+
+## 前置条件
+* G++ 4.8.2 ~ 4.9.4
+* CUDA 9.0 / CUDA 10.0, CUDNN 7+ (仅在使用GPU版本的预测库时需要)
+* CMake 3.0+
+
+请确保系统已经安装好上述基本软件,**下面所有示例以工作目录 `/root/projects/`演示**。
+
+### Step1: 下载代码
+
+ `git clone https://github.com/PaddlePaddle/PaddleX.git`
+
+**说明**:其中`C++`预测代码在`/root/projects/PaddleX/deploy/cpp` 目录,该目录不依赖任何`PaddleX`下其他目录。
+
+
+### Step2: 下载PaddlePaddle C++ 预测库 paddle_inference
+
+目前PaddlePaddle为Nvidia-Jetson 提供了一个基于1.6.2版本的C++ 预测库。
+
+|  版本说明   | 预测库(1.6.2版本)  |
+|  ----  | ----  |
+| nv-jetson-cuda10-cudnn7.5-trt5 | [paddle_inference](https://paddle-inference-lib.bj.bcebos.com/1.7.1-nv-jetson-cuda10-cudnn7.5-trt5/fluid_inference.tar.gz) |
+
+下载并解压后`/root/projects/fluid_inference`目录包含内容为:
+```
+fluid_inference
+├── paddle # paddle核心库和头文件
+|
+├── third_party # 第三方依赖库和头文件
+|
+└── version.txt # 版本和编译信息
+```
+
+### Step3: 编译
+
+编译`cmake`的命令在`scripts/jetson_build.sh`中,请根据实际情况修改主要参数,其主要内容说明如下:
+```
+# 是否使用GPU(即是否使用 CUDA)
+WITH_GPU=OFF
+# 使用MKL or openblas
+WITH_MKL=OFF
+# 是否集成 TensorRT(仅WITH_GPU=ON 有效)
+WITH_TENSORRT=OFF
+# TensorRT 的路径,如果需要集成TensorRT,需修改为您实际安装的TensorRT路径
+TENSORRT_DIR=/root/projects/TensorRT/
+# Paddle 预测库路径, 请修改为您实际安装的预测库路径
+PADDLE_DIR=/root/projects/fluid_inference
+# Paddle 的预测库是否使用静态库来编译
+# 使用TensorRT时,Paddle的预测库通常为动态库
+WITH_STATIC_LIB=OFF
+# CUDA 的 lib 路径
+CUDA_LIB=/usr/local/cuda/lib64
+# CUDNN 的 lib 路径
+CUDNN_LIB=/usr/local/cuda/lib64
+
+# 是否加载加密后的模型
+WITH_ENCRYPTION=OFF
+
+# OPENCV 路径, 如果使用自带预编译版本可不修改
+sh $(pwd)/scripts/jetson_bootstrap.sh  # 下载预编译版本的opencv
+OPENCV_DIR=$(pwd)/deps/opencv3/
+
+# 以下无需改动
+rm -rf build
+mkdir -p build
+cd build
+cmake .. \
+    -DWITH_GPU=${WITH_GPU} \
+    -DWITH_MKL=${WITH_MKL} \
+    -DWITH_TENSORRT=${WITH_TENSORRT} \
+    -DWITH_ENCRYPTION=${WITH_ENCRYPTION} \
+    -DTENSORRT_DIR=${TENSORRT_DIR} \
+    -DPADDLE_DIR=${PADDLE_DIR} \
+    -DWITH_STATIC_LIB=${WITH_STATIC_LIB} \
+    -DCUDA_LIB=${CUDA_LIB} \
+    -DCUDNN_LIB=${CUDNN_LIB} \
+    -DENCRYPTION_DIR=${ENCRYPTION_DIR} \
+    -DOPENCV_DIR=${OPENCV_DIR}
+make
+```
+**注意:** linux环境下编译会自动下载OPENCV和YAML,如果编译环境无法访问外网,可手动下载:
+
+- [opencv3_aarch.tgz](https://bj.bcebos.com/paddlex/deploy/tools/opencv3_aarch.tgz)
+- [yaml-cpp.zip](https://bj.bcebos.com/paddlex/deploy/deps/yaml-cpp.zip)
+
+opencv3_aarch.tgz文件下载后解压,然后在script/build.sh中指定`OPENCE_DIR`为解压后的路径。
+
+yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://bj.bcebos.com/paddlex/deploy/deps/yaml-cpp.zip` 中的网址,改为下载文件的路径。
+
+修改脚本设置好主要参数后,执行`build`脚本:
+ ```shell
+ sh ./scripts/jetson_build.sh
+ ```
+
+### Step4: 预测及可视化
+
+**在加载模型前,请检查你的模型目录中文件应该包括`model.yml`、`__model__`和`__params__`三个文件。如若不满足这个条件,请参考[模型导出为Inference文档](export_model.md)将模型导出为部署格式。**  
+
+编译成功后,预测demo的可执行程序分别为`build/demo/detector`,`build/demo/classifier`,`build/demo/segmenter`,用户可根据自己的模型类型选择,其主要命令参数说明如下:
+
+|  参数   | 说明  |
+|  ----  | ----  |
+| model_dir  | 导出的预测模型所在路径 |
+| image  | 要预测的图片文件路径 |
+| image_list  | 按行存储图片路径的.txt文件 |
+| use_gpu  | 是否使用 GPU 预测, 支持值为0或1(默认值为0) |
+| use_trt  | 是否使用 TensorRT 预测, 支持值为0或1(默认值为0) |
+| gpu_id  | GPU 设备ID, 默认值为0 |
+| save_dir | 保存可视化结果的路径, 默认值为"output",**classfier无该参数** |
+| key | 加密过程中产生的密钥信息,默认值为""表示加载的是未加密的模型 |
+| batch_size | 预测的批量大小,默认为1 |
+| thread_num | 预测的线程数,默认为cpu处理器个数 |
+| use_ir_optim | 是否使用图优化策略,支持值为0或1(默认值为1,图像分割默认值为0)|
+
+## 样例
+
+可使用[小度熊识别模型](export_model.md)中导出的`inference_model`和测试图片进行预测,导出到/root/projects,模型路径为/root/projects/inference_model。
+
+`样例一`:
+
+不使用`GPU`测试图片 `/root/projects/images/xiaoduxiong.jpeg`  
+
+```shell
+./build/demo/detector --model_dir=/root/projects/inference_model --image=/root/projects/images/xiaoduxiong.jpeg --save_dir=output
+```
+图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。
+
+
+`样例二`:
+
+使用`GPU`预测多个图片`/root/projects/image_list.txt`,image_list.txt内容的格式如下:
+```
+/root/projects/images/xiaoduxiong1.jpeg
+/root/projects/images/xiaoduxiong2.jpeg
+...
+/root/projects/images/xiaoduxiongn.jpeg
+```
+```shell
+./build/demo/detector --model_dir=/root/projects/inference_model --image_list=/root/projects/images_list.txt --use_gpu=1 --save_dir=output --batch_size=2 --thread_num=2
+```
+图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。

+ 11 - 0
docs/deploy/openvino/index.rst

@@ -0,0 +1,11 @@
+OpenVINO部署
+=======================================
+
+
+.. toctree::
+   :maxdepth: 2
+   :caption: 文档目录:
+
+   windows.md
+   linux.md
+   intel_movidius.md

+ 1 - 0
docs/deploy/openvino/intel_movidius.md

@@ -0,0 +1 @@
+# Intel计算棒

+ 1 - 0
docs/deploy/openvino/linux.md

@@ -0,0 +1 @@
+# Linux平台

+ 1 - 0
docs/deploy/openvino/windows.md

@@ -0,0 +1 @@
+# Windows平台

+ 1 - 0
docs/deploy/paddlelite/android.md

@@ -0,0 +1 @@
+# Android平台

+ 10 - 0
docs/deploy/paddlelite/index.rst

@@ -0,0 +1,10 @@
+PaddleLite移动端部署
+=======================================
+
+
+.. toctree::
+   :maxdepth: 2
+   :caption: 文档目录:
+
+   slim/index
+   android.md

+ 3 - 1
docs/slim/index.rst → docs/deploy/paddlelite/slim/index.rst

@@ -1,8 +1,10 @@
 模型压缩
-============================
+=======================================
+
 
 .. toctree::
    :maxdepth: 2
+   :caption: 文档目录:
 
    prune.md
    quant.md

+ 1 - 0
docs/deploy/paddlelite/slim/prune.md

@@ -0,0 +1 @@
+# 模型裁剪

+ 1 - 0
docs/deploy/paddlelite/slim/quant.md

@@ -0,0 +1 @@
+# 模型量化

+ 10 - 0
docs/deploy/server/cpp/index.rst

@@ -0,0 +1,10 @@
+服务端C++部署
+=======================================
+
+
+.. toctree::
+   :maxdepth: 2
+   :caption: 文档目录:
+
+   windows.md
+   linux.md

+ 12 - 11
docs/tutorials/deploy/deploy_server/deploy_cpp/deploy_cpp_linux.md → docs/deploy/server/cpp/linux.md

@@ -17,18 +17,18 @@
 **说明**:其中`C++`预测代码在`/root/projects/PaddleX/deploy/cpp` 目录,该目录不依赖任何`PaddleX`下其他目录。
 
 
-### Step2: 下载PaddlePaddle C++ 预测库 fluid_inference
+### Step2: 下载PaddlePaddle C++ 预测库 paddle_inference
 
 PaddlePaddle C++ 预测库针对不同的`CPU`,`CUDA`,以及是否支持TensorRT,提供了不同的预编译版本,目前PaddleX依赖于Paddle1.8版本,以下提供了多个不同版本的Paddle预测库:
 
 |  版本说明   | 预测库(1.8.2版本)  |
 |  ----  | ----  |
-| ubuntu14.04_cpu_avx_mkl  | [fluid_inference.tgz](https://paddle-inference-lib.bj.bcebos.com/1.8.2-cpu-avx-mkl/fluid_inference.tgz) |
-| ubuntu14.04_cpu_avx_openblas  | [fluid_inference.tgz](https://paddle-inference-lib.bj.bcebos.com/1.8.2-cpu-avx-openblas/fluid_inference.tgz) |
-| ubuntu14.04_cpu_noavx_openblas  | [fluid_inference.tgz](https://paddle-inference-lib.bj.bcebos.com/1.8.2-cpu-noavx-openblas/fluid_inference.tgz) |
-| ubuntu14.04_cuda9.0_cudnn7_avx_mkl  | [fluid_inference.tgz](https://paddle-inference-lib.bj.bcebos.com/1.8.2-gpu-cuda9-cudnn7-avx-mkl/fluid_inference.tgz) |
-| ubuntu14.04_cuda10.0_cudnn7_avx_mkl  | [fluid_inference.tgz](https://paddle-inference-lib.bj.bcebos.com/1.8.2-gpu-cuda10-cudnn7-avx-mkl/fluid_inference.tgz ) |
-| ubuntu14.04_cuda10.1_cudnn7.6_avx_mkl_trt6  | [fluid_inference.tgz](https://paddle-inference-lib.bj.bcebos.com/1.8.2-gpu-cuda10.1-cudnn7.6-avx-mkl-trt6%2Ffluid_inference.tgz) |
+| ubuntu14.04_cpu_avx_mkl  | [paddle_inference](https://paddle-inference-lib.bj.bcebos.com/1.8.2-cpu-avx-mkl/fluid_inference.tgz) |
+| ubuntu14.04_cpu_avx_openblas  | [paddle_inference](https://paddle-inference-lib.bj.bcebos.com/1.8.2-cpu-avx-openblas/fluid_inference.tgz) |
+| ubuntu14.04_cpu_noavx_openblas  | [paddle_inference](https://paddle-inference-lib.bj.bcebos.com/1.8.2-cpu-noavx-openblas/fluid_inference.tgz) |
+| ubuntu14.04_cuda9.0_cudnn7_avx_mkl  | [paddle_inference](https://paddle-inference-lib.bj.bcebos.com/1.8.2-gpu-cuda9-cudnn7-avx-mkl/fluid_inference.tgz) |
+| ubuntu14.04_cuda10.0_cudnn7_avx_mkl  | [paddle_inference](https://paddle-inference-lib.bj.bcebos.com/1.8.2-gpu-cuda10-cudnn7-avx-mkl/fluid_inference.tgz ) |
+| ubuntu14.04_cuda10.1_cudnn7.6_avx_mkl_trt6  | [paddle_inference](https://paddle-inference-lib.bj.bcebos.com/1.8.2-gpu-cuda10.1-cudnn7.6-avx-mkl-trt6%2Ffluid_inference.tgz) |
 
 更多和更新的版本,请根据实际情况下载:  [C++预测库下载列表](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html)
 
@@ -45,7 +45,7 @@ fluid_inference
 **注意:** 预编译版本除`nv-jetson-cuda10-cudnn7.5-trt5` 以外其它包都是基于`GCC 4.8.5`编译,使用高版本`GCC`可能存在 `ABI`兼容性问题,建议降级或[自行编译预测库](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html#id12)。
 
 
-### Step4: 编译
+### Step3: 编译
 
 编译`cmake`的命令在`scripts/build.sh`中,请根据实际情况修改主要参数,其主要内容说明如下:
 ```
@@ -112,9 +112,9 @@ yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://
  sh ./scripts/build.sh
  ```
 
-### Step5: 预测及可视化
+### Step4: 预测及可视化
 
-**在加载模型前,请检查你的模型目录中文件应该包括`model.yml`、`__model__`和`__params__`三个文件。如若不满足这个条件,请参考[模型导出为Inference文档](../deploy_python.html#inference)将模型导出为部署格式。**  
+**在加载模型前,请检查你的模型目录中文件应该包括`model.yml`、`__model__`和`__params__`三个文件。如若不满足这个条件,请参考[模型导出为Inference文档](../../export_model.md)将模型导出为部署格式。**  
 
 编译成功后,预测demo的可执行程序分别为`build/demo/detector`,`build/demo/classifier`,`build/demo/segmenter`,用户可根据自己的模型类型选择,其主要命令参数说明如下:
 
@@ -130,10 +130,11 @@ yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://
 | key | 加密过程中产生的密钥信息,默认值为""表示加载的是未加密的模型 |
 | batch_size | 预测的批量大小,默认为1 |
 | thread_num | 预测的线程数,默认为cpu处理器个数 |
+| use_ir_optim | 是否使用图优化策略,支持值为0或1(默认值为1,图像分割默认值为0)|
 
 ## 样例
 
-可使用[小度熊识别模型](../deploy_python.html#inference)中导出的`inference_model`和测试图片进行预测,导出到/root/projects,模型路径为/root/projects/inference_model。
+可使用[小度熊识别模型](../../export_model.md)中导出的`inference_model`和测试图片进行预测,导出到/root/projects,模型路径为/root/projects/inference_model。
 
 `样例一`:
 

+ 9 - 8
docs/tutorials/deploy/deploy_server/deploy_cpp/deploy_cpp_win_vs2019.md → docs/deploy/server/cpp/windows.md

@@ -24,17 +24,17 @@ git clone https://github.com/PaddlePaddle/PaddleX.git
 **说明**:其中`C++`预测代码在`PaddleX\deploy\cpp` 目录,该目录不依赖任何`PaddleX`下其他目录。
 
 
-### Step2: 下载PaddlePaddle C++ 预测库 fluid_inference
+### Step2: 下载PaddlePaddle C++ 预测库 paddle_inference
 
 PaddlePaddle C++ 预测库针对是否使用GPU、是否支持TensorRT、以及不同的CUDA版本提供了已经编译好的预测库,目前PaddleX依赖于Paddle 1.8,基于Paddle 1.8的Paddle预测库下载链接如下所示:
 
 |  版本说明   | 预测库(1.8.2版本)  | 编译器 | 构建工具| cuDNN | CUDA |
 |  ----  |  ----  |  ----  |  ----  | ---- | ---- |
-| cpu_avx_mkl  | [fluid_inference.zip](https://paddle-wheel.bj.bcebos.com/1.8.2/win-infer/mkl/cpu/fluid_inference_install_dir.zip) | MSVC 2015 update 3 | CMake v3.16.0 |
-| cpu_avx_openblas  | [fluid_inference.zip](https://paddle-wheel.bj.bcebos.com/1.8.2/win-infer/open/cpu/fluid_inference_install_dir.zip) | MSVC 2015 update 3 | CMake v3.16.0 |
-| cuda9.0_cudnn7_avx_mkl  | [fluid_inference.zip](https://paddle-wheel.bj.bcebos.com/1.8.2/win-infer/mkl/post97/fluid_inference_install_dir.zip) | MSVC 2015 update 3 | CMake v3.16.0 | 7.4.1 | 9.0 |
-| cuda9.0_cudnn7_avx_openblas  | [fluid_inference.zip](https://paddle-wheel.bj.bcebos.com/1.8.2/win-infer/open/post97/fluid_inference_install_dir.zip) | MSVC 2015 update 3 | CMake v3.16.0 | 7.4.1 | 9.0 |
-| cuda10.0_cudnn7_avx_mkl  | [fluid_inference.zip](https://paddle-wheel.bj.bcebos.com/1.8.2/win-infer/mkl/post107/fluid_inference_install_dir.zip) | MSVC 2015 update 3 | CMake v3.16.0 | 7.5.0 | 9.0 |
+| cpu_avx_mkl  | [paddle_inference](https://paddle-wheel.bj.bcebos.com/1.8.2/win-infer/mkl/cpu/fluid_inference_install_dir.zip) | MSVC 2015 update 3 | CMake v3.16.0 |
+| cpu_avx_openblas  | [paddle_inference](https://paddle-wheel.bj.bcebos.com/1.8.2/win-infer/open/cpu/fluid_inference_install_dir.zip) | MSVC 2015 update 3 | CMake v3.16.0 |
+| cuda9.0_cudnn7_avx_mkl  | [paddle_inference](https://paddle-wheel.bj.bcebos.com/1.8.2/win-infer/mkl/post97/fluid_inference_install_dir.zip) | MSVC 2015 update 3 | CMake v3.16.0 | 7.4.1 | 9.0 |
+| cuda9.0_cudnn7_avx_openblas  | [paddle_inference](https://paddle-wheel.bj.bcebos.com/1.8.2/win-infer/open/post97/fluid_inference_install_dir.zip) | MSVC 2015 update 3 | CMake v3.16.0 | 7.4.1 | 9.0 |
+| cuda10.0_cudnn7_avx_mkl  | [paddle_inference](https://paddle-wheel.bj.bcebos.com/1.8.2/win-infer/mkl/post107/fluid_inference_install_dir.zip) | MSVC 2015 update 3 | CMake v3.16.0 | 7.5.0 | 9.0 |
 
 请根据实际情况选择下载,如若以上版本不满足您的需求,请至[C++预测库下载列表](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/advanced_guide/inference_deployment/inference/windows_cpp_inference.html)选择符合的版本。
 
@@ -101,7 +101,7 @@ yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://
 
 ### Step5: 预测及可视化
 
-**在加载模型前,请检查你的模型目录中文件应该包括`model.yml`、`__model__`和`__params__`三个文件。如若不满足这个条件,请参考[模型导出为Inference文档](../deploy_python.html#inference)将模型导出为部署格式。**  
+**在加载模型前,请检查你的模型目录中文件应该包括`model.yml`、`__model__`和`__params__`三个文件。如若不满足这个条件,请参考[模型导出为Inference文档](../../export_model.md)将模型导出为部署格式。**  
 
 上述`Visual Studio 2019`编译产出的可执行文件在`out\build\x64-Release`目录下,打开`cmd`,并切换到该目录:
 
@@ -123,10 +123,11 @@ cd D:\projects\PaddleX\deploy\cpp\out\build\x64-Release
 | key | 加密过程中产生的密钥信息,默认值为""表示加载的是未加密的模型 |
 | batch_size | 预测的批量大小,默认为1 |
 | thread_num | 预测的线程数,默认为cpu处理器个数 |
+| use_ir_optim | 是否使用图优化策略,支持值为0或1(默认值为1,图像分割默认值为0)|
 
 ## 样例
 
-可使用[小度熊识别模型](../deploy_python.md)中导出的`inference_model`和测试图片进行预测, 例如导出到D:\projects,模型路径为D:\projects\inference_model。
+可使用[小度熊识别模型](../../export_model.md)中导出的`inference_model`和测试图片进行预测, 例如导出到D:\projects,模型路径为D:\projects\inference_model。
 
 ### 样例一:(使用未加密的模型对单张图像做预测)
 

+ 8 - 7
docs/tutorials/deploy/deploy_server/encryption.md → docs/deploy/server/encryption.md

@@ -26,9 +26,9 @@ PaddleX提供一个轻量级的模型加密部署方案,通过PaddleX内置的
 >
 > 2)项目集成OpenSSL,使用静态库的形式。
 >
-> 3)实现AES算法接口,借助OpenSSL提供的EVP接口,在EVP接口中指定算法类型,算法使用对称加解密算法中的AES,加解密模式使用AES-GCM, 密钥长度为256位,AES-GCM的实现可以参考官方提供的例子自己进行封装接口:https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption。
+> 3)实现AES算法接口,借助OpenSSL提供的EVP接口,在EVP接口中指定算法类型,算法使用对称加解密算法中的AES,加解密模式使用AES-GCM, 密钥长度为256位,AES-GCM的实现可以参考官方提供的例子自己进行封装接口:[AES-GCM实现](https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption)
 >
-> 4)利用OpenSSL库实现SHA256摘要算法,这部分下面有用(可选)。关于SHA256的hash计算可以参考OpenSSL提供的example:https://wiki.openssl.org/index.php/EVP_Message_Digests
+> 4)利用OpenSSL库实现SHA256摘要算法,这部分下面有用(可选)。关于SHA256的hash计算可以参考OpenSSL提供的example:[OpenSSL 信息摘要例子](https://wiki.openssl.org/index.php/EVP_Message_Digests)。
 >
 > 5)在模型加密环节直接对model文件和params文件的数据内容进行加密后保存到新的文件,为了新的文件能够被区分和可迭代,除了加密后的数据外还添加了头部信息,比如为了判断该文件类型使用固定的魔数作为文件的开头;为了便于后面需求迭代写入版本号以示区别;为了能够在解密时判断是否采用了相同的密钥将加密时的密钥进行SHA256计算后存储;这三部分构成了目前加密后文件的头部信息。加密后的文件包含头部信息 + 密文信息。
 >
@@ -80,14 +80,14 @@ Windows平台:
 .\paddlex-encryption\tool\paddlex_encrypt_tool.exe -model_dir D:\projects\paddlex_inference_model -save_dir D:\projects\paddlex_encrypted_model
 ```
 
-`-model_dir`用于指定inference模型路径(参考[导出inference模型](deploy_python.html#inference)将模型导出为inference格式模型),可使用[导出小度熊识别模型](deploy_python.html#inference)中导出的`inference_model`。加密完成后,加密过的模型会保存至指定的`-save_dir`下,包含`__model__.encrypted`、`__params__.encrypted`和`model.yml`三个文件,同时生成密钥信息,命令输出如下图所示,密钥为`kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=`
+`-model_dir`用于指定inference模型路径(参考[导出inference模型](../export_model.md)将模型导出为inference格式模型),可使用[导出小度熊识别模型](../export_model.md)中导出的`inference_model`。加密完成后,加密过的模型会保存至指定的`-save_dir`下,包含`__model__.encrypted`、`__params__.encrypted`和`model.yml`三个文件,同时生成密钥信息,命令输出如下图所示,密钥为`kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=`
 
 ![](../images/encrypt.png)
 
 ## 2. PaddleX C++加密部署
 
 ### 2.1 Linux平台使用
-参考[Linux平台编译指南](deploy_cpp/deploy_cpp_linux.md)编译C++部署代码。编译成功后,预测demo的可执行程序分别为`build/demo/detector`,`build/demo/classifier`,`build/demo/segmenter`,用户可根据自己的模型类型选择,其主要命令参数说明如下:
+参考[Linux平台编译指南](cpp/linux.md)编译C++部署代码。编译成功后,预测demo的可执行程序分别为`build/demo/detector`,`build/demo/classifier`,`build/demo/segmenter`,用户可根据自己的模型类型选择,其主要命令参数说明如下:
 
 |  参数   | 说明  |
 |  ----  | ----  |
@@ -101,11 +101,12 @@ Windows平台:
 | key | 加密过程中产生的密钥信息,默认值为""表示加载的是未加密的模型 |
 | batch_size | 预测的批量大小,默认为1 |
 | thread_num | 预测的线程数,默认为cpu处理器个数 |
+| use_ir_optim | 是否使用图优化策略,支持值为0或1(默认值为1,图像分割默认值为0)|
 
 
 ### 样例
 
-可使用[导出小度熊识别模型](deploy_python.md#inference)中的测试图片进行预测。
+可使用[导出小度熊识别模型](../export_model.md)中的测试图片进行预测。
 
 #### 样例一:
 
@@ -132,11 +133,11 @@ Windows平台:
 `--key`传入加密工具输出的密钥,例如`kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=`, 图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。
 
 ### 2.2 Windows平台使用
-参考[Windows平台编译指南](deploy_cpp/deploy_cpp_win_vs2019.md)。需自行下载Windows版PaddleX加密工具压缩包,解压,在编译指南的编译流程基础上,在CMake设置中勾选WITH_ENCRYPTION,ENCRYPTION_DIR填写为加密工具包解压后的目录,再进行编译。参数与Linux版本预测部署一致。预测demo的入口程序为paddlex_inference\detector.exe,paddlex_inference\classifier.exe,paddlex_inference\segmenter.exe。
+参考[Windows平台编译指南](cpp/windows.md)。需自行下载Windows版PaddleX加密工具压缩包,解压,在编译指南的编译流程基础上,在CMake设置中勾选WITH_ENCRYPTION,ENCRYPTION_DIR填写为加密工具包解压后的目录,再进行编译。参数与Linux版本预测部署一致。预测demo的入口程序为paddlex_inference\detector.exe,paddlex_inference\classifier.exe,paddlex_inference\segmenter.exe。
 
 ### 样例
 
-可使用[导出小度熊识别模型](deploy_python.md#inference)中的测试图片进行预测。
+可使用[导出小度熊识别模型](../export_model.md)中的测试图片进行预测。
 
 #### 样例一:
 

+ 11 - 0
docs/deploy/server/index.rst

@@ -0,0 +1,11 @@
+服务端部署
+=======================================
+
+
+.. toctree::
+   :maxdepth: 2
+   :caption: 文档目录:
+
+   python.md
+   cpp/index
+   encryption.md

+ 2 - 17
docs/tutorials/deploy/deploy_server/deploy_python.md → docs/deploy/server/python.md

@@ -1,23 +1,8 @@
 # Python部署
 PaddleX已经集成了基于Python的高性能预测接口,在安装PaddleX后,可参照如下代码示例,进行预测。相关的接口文档可参考[paddlex.deploy](../../../apis/deploy.md)
 
-## 导出inference模型
-
-在服务端部署的模型需要首先将模型导出为inference格式模型,导出的模型将包括`__model__`、`__params__`和`model.yml`三个文名,分别为模型的网络结构,模型权重和模型的配置文件(包括数据预处理参数等等)。在安装完PaddleX后,在命令行终端使用如下命令导出模型到当前目录`inferece_model`下。
-> 可直接下载小度熊分拣模型测试本文档的流程[xiaoduxiong_epoch_12.tar.gz](https://bj.bcebos.com/paddlex/models/xiaoduxiong_epoch_12.tar.gz)
-
-```
-paddlex --export_inference --model_dir=./xiaoduxiong_epoch_12 --save_dir=./inference_model
-```
-
-使用TensorRT预测时,需指定模型的图像输入shape:[w,h]。
-**注**:
-- 分类模型请保持于训练时输入的shape一致。
-- 指定[w,h]时,w和h中间逗号隔开,不允许存在空格等其他字符
-
-```
-paddlex --export_inference --model_dir=./xiaoduxiong_epoch_12 --save_dir=./inference_model --fixed_input_shape=[640,960]
-```
+## 导出预测模型
+可参考[模型导出](../export_model.md)将模型导出为inference格式的模型。
 
 ## 预测部署
 **注意:由于PaddleX代码的持续更新,版本低于1.0.0的模型暂时无法直接用于预测部署,参考[模型版本升级](../upgrade_version.md)对模型版本进行升级。**

+ 0 - 0
docs/tutorials/deploy/upgrade_version.md → docs/deploy/upgrade_version.md


+ 5 - 0
docs/examples/human_segmentation/index.rst

@@ -0,0 +1,5 @@
+人像分割案例
+=======================================
+
+
+这里面写人像分割案例,可根据需求拆分为多个文档

+ 12 - 0
docs/examples/index.rst

@@ -0,0 +1,12 @@
+产业案例集
+=======================================
+
+
+.. toctree::
+   :maxdepth: 2
+   :caption: 文档目录:
+
+   solutions.md
+   meter_reading/index
+   human_segmentation/index
+   remote_sensing/index

+ 5 - 0
docs/examples/meter_reading/index.rst

@@ -0,0 +1,5 @@
+工业表计读数案例
+=======================================
+
+
+这里面写表计读数案例,可根据需求拆分为多个文档

+ 5 - 0
docs/examples/remote_sensing/index.rst

@@ -0,0 +1,5 @@
+遥感分割案例
+=======================================
+
+
+这里面写遥感分割案例,可根据需求拆分为多个文档

+ 1 - 0
docs/examples/solutions.md

@@ -0,0 +1 @@
+# PaddleX模型介绍

+ 1 - 4
docs/paddlex_gui/index.rst → docs/gui/index.rst

@@ -1,4 +1,4 @@
-PaddleX GUI使用文档
+PaddleX GUI
 =======================================
 
 PaddleX GUI是基于PaddleX开发实现的可视化模型训练套件,可以让开发者免去代码开发的步骤,通过点选式地操作就可以快速完成模型的训练开发。PaddleXGUI具有 **数据集可视化分析** 、**模型参数自动推荐** 、**跨平台使用** 三大特点。
@@ -17,9 +17,6 @@ PaddleX GUI是基于PaddleX开发实现的可视化模型训练套件,可以
    :maxdepth: 2
    :caption: 文档目录:
 
-   download.md
-   how_to_use.md
-   xx.md
 
 * PaddleX GUI版本: v1.0
 * 项目官网: http://www.paddlepaddle.org.cn/paddle/paddlex  

BIN
docs/images/00_loaddata.png


BIN
docs/images/01_datasplit.png


BIN
docs/images/02_newproject.png


BIN
docs/images/03_choosedata.png


BIN
docs/images/04_parameter.png


BIN
docs/images/05_train.png


BIN
docs/images/06_VisualDL.png


BIN
docs/images/07_evaluate.png


BIN
docs/images/08_deploy.png


BIN
docs/images/PaddleX-Pipe-Line.png


BIN
docs/images/QQGroup.jpeg


BIN
docs/images/garbage.bmp


Энэ ялгаанд хэт олон файл өөрчлөгдсөн тул зарим файлыг харуулаагүй болно