|
|
@@ -0,0 +1,109 @@
|
|
|
+# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
|
|
|
+#
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
+# You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
+# limitations under the License.
|
|
|
+
|
|
|
+import numpy as np
|
|
|
+
|
|
|
+from ...utils.func_register import FuncRegister
|
|
|
+from ...modules.general_recognition.model_list import MODELS
|
|
|
+from ..components import *
|
|
|
+from ..results import BaseResult
|
|
|
+from ..utils.process_hook import batchable_method
|
|
|
+from .base import BasicPredictor
|
|
|
+
|
|
|
+
|
|
|
+class ShiTuRecPredictor(BasicPredictor):
|
|
|
+
|
|
|
+ entities = MODELS
|
|
|
+
|
|
|
+ _FUNC_MAP = {}
|
|
|
+ register = FuncRegister(_FUNC_MAP)
|
|
|
+
|
|
|
+ def _check_args(self, kwargs):
|
|
|
+ assert set(kwargs.keys()).issubset(set(["batch_size"]))
|
|
|
+ return kwargs
|
|
|
+
|
|
|
+ def _build_components(self):
|
|
|
+ ops = {}
|
|
|
+ ops["ReadImage"] = ReadImage(
|
|
|
+ batch_size=self.kwargs.get("batch_size", 1), format="RGB"
|
|
|
+ )
|
|
|
+ for cfg in self.config["PreProcess"]["transform_ops"]:
|
|
|
+ tf_key = list(cfg.keys())[0]
|
|
|
+ func = self._FUNC_MAP.get(tf_key)
|
|
|
+ args = cfg.get(tf_key, {})
|
|
|
+ op = func(self, **args) if args else func(self)
|
|
|
+ ops[tf_key] = op
|
|
|
+
|
|
|
+ predictor = ImagePredictor(
|
|
|
+ model_dir=self.model_dir,
|
|
|
+ model_prefix=self.MODEL_FILE_PREFIX,
|
|
|
+ option=self.pp_option,
|
|
|
+ )
|
|
|
+ ops["predictor"] = predictor
|
|
|
+
|
|
|
+ post_processes = self.config["PostProcess"]
|
|
|
+ for key in post_processes:
|
|
|
+ func = self._FUNC_MAP.get(key)
|
|
|
+ args = post_processes.get(key, {})
|
|
|
+ op = func(self, **args) if args else func(self)
|
|
|
+ ops[key] = op
|
|
|
+ return ops
|
|
|
+
|
|
|
+ @register("ResizeImage")
|
|
|
+ # TODO(gaotingquan): backend & interpolation
|
|
|
+ def build_resize(
|
|
|
+ self,
|
|
|
+ resize_short=None,
|
|
|
+ size=None,
|
|
|
+ backend="cv2",
|
|
|
+ interpolation="LINEAR",
|
|
|
+ return_numpy=False,
|
|
|
+ ):
|
|
|
+ assert resize_short or size
|
|
|
+ if resize_short:
|
|
|
+ op = ResizeByShort(
|
|
|
+ target_short_edge=resize_short, size_divisor=None, interp="LINEAR"
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ op = Resize(target_size=size)
|
|
|
+ return op
|
|
|
+
|
|
|
+ @register("CropImage")
|
|
|
+ def build_crop(self, size=224):
|
|
|
+ return Crop(crop_size=size)
|
|
|
+
|
|
|
+ @register("NormalizeImage")
|
|
|
+ def build_normalize(
|
|
|
+ self,
|
|
|
+ mean=[0.485, 0.456, 0.406],
|
|
|
+ std=[0.229, 0.224, 0.225],
|
|
|
+ scale=1 / 255,
|
|
|
+ order="",
|
|
|
+ channel_num=3,
|
|
|
+ ):
|
|
|
+ assert channel_num == 3
|
|
|
+ return Normalize(mean=mean, std=std)
|
|
|
+
|
|
|
+ @register("ToCHWImage")
|
|
|
+ def build_to_chw(self):
|
|
|
+ return ToCHWImage()
|
|
|
+
|
|
|
+ @register("NormalizeFeatures")
|
|
|
+ def build_normalize_features(self):
|
|
|
+ return NormalizeFeatures()
|
|
|
+
|
|
|
+ @batchable_method
|
|
|
+ def _pack_res(self, data):
|
|
|
+ keys = ["img_path", "rec_feature"]
|
|
|
+ return {"result": BaseResult({key: data[key] for key in keys})}
|