|
|
@@ -87,49 +87,50 @@
|
|
|
|
|
|
### Faster RCNN on COCO
|
|
|
|
|
|
-| 骨架网络 | 网络类型 | 每张GPU图片个数 |推理时间(fps) | Box AP | 下载 |
|
|
|
-| :------------------- | :------------- | :-----: | :------------: | :-----: | :-----------------------------------------------------: |
|
|
|
-| ResNet50 | Faster | 1 | ---- | 36.7 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_1x_coco.pdparams) |
|
|
|
-| ResNet50-vd | Faster | 1 | ---- | 37.6 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_1x_coco.pdparams) |
|
|
|
-| ResNet101 | Faster | 1 | ---- | 39.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_1x_coco.pdparams) |
|
|
|
-| ResNet34-FPN | Faster | 1 | ---- | 37.8 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r34_fpn_1x_coco.pdparams) |
|
|
|
-| ResNet34-vd-FPN | Faster | 1 | ---- | 38.5 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r34_vd_fpn_1x_coco.pdparams) |
|
|
|
-| ResNet50-FPN | Faster | 1 | ---- | 38.4 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_1x_coco.pdparams) |
|
|
|
-| ResNet50-vd-FPN | Faster | 1 | ---- | 39.5 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_1x_coco.pdparams) |
|
|
|
-| ResNet101-vd-FPN | Faster | 1 | ---- | 42.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_vd_fpn_1x_coco.pdparams) |
|
|
|
-| ResNeXt101-vd-FPN | Faster | 1 | ---- | 43.4 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_x101_vd_64x4d_fpn_1x_coco.pdparams) |
|
|
|
-| ResNet50-vd-SSLDv2-FPN | Faster | 1 | ---- | 41.4 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) |
|
|
|
+| 骨架网络 | 网络类型 | 推理时间(fps) | Box AP | 下载 |
|
|
|
+| :------------------- | :------------- | :------------: | :-----: | :-----------------------------------------------------: |
|
|
|
+| ResNet50 | Faster | ---- | 36.7 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_1x_coco.pdparams) |
|
|
|
+| ResNet50-vd | Faster | ---- | 37.6 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_1x_coco.pdparams) |
|
|
|
+| ResNet101 | Faster | ---- | 39.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_1x_coco.pdparams) |
|
|
|
+| ResNet34-FPN | Faster | ---- | 37.8 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r34_fpn_1x_coco.pdparams) |
|
|
|
+| ResNet34-vd-FPN | Faster | ---- | 38.5 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r34_vd_fpn_1x_coco.pdparams) |
|
|
|
+| ResNet50-FPN | Faster | ---- | 38.4 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_1x_coco.pdparams) |
|
|
|
+| ResNet50-vd-FPN | Faster | ---- | 39.5 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_1x_coco.pdparams) |
|
|
|
+| ResNet101-vd-FPN | Faster | ---- | 42.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_vd_fpn_1x_coco.pdparams) |
|
|
|
+| ResNeXt101-vd-FPN | Faster | ---- | 43.4 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_x101_vd_64x4d_fpn_1x_coco.pdparams) |
|
|
|
+| ResNet50-vd-SSLDv2-FPN | Faster | ---- | 41.4 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) |
|
|
|
|
|
|
|
|
|
|
|
|
### YOLOv3 on COCO
|
|
|
|
|
|
-| 骨架网络 | 输入尺寸 | 每张GPU图片个数 | 推理时间(fps) | Box AP | 下载 |
|
|
|
-| :------------------- | :------- | :-----: | :------------: | :-----: | :-----------------------------------------------------: | :-----: |
|
|
|
-| DarkNet53 | 608 | 8 | ---- | 39.0 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams) |
|
|
|
-| ResNet50_vd | 608 | 8 | ---- | 39.1 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_r50vd_dcn_270e_coco.pdparams) |
|
|
|
-| ResNet34 | 608 | 8 | ---- | 36.2 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_r34_270e_coco.pdparams) |
|
|
|
-| MobileNet-V1 | 608 | 8 | ---- | 29.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams) |
|
|
|
-| MobileNet-V3 | 608 | 8 | ---- | 31.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_coco.pdparams) |
|
|
|
-| MobileNet-V1-SSLD | 608 | 8 | ---- | 31.0 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_coco.pdparams) |
|
|
|
+| 骨架网络 | 输入尺寸 | 推理时间(fps) | Box AP | 下载 |
|
|
|
+| :------------------- | :------- | :------------: | :-----: | :-----------------------------------------------------: |
|
|
|
+| DarkNet53 | 608 | ---- | 39.0 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams) |
|
|
|
+| ResNet50_vd | 608 | ---- | 39.1 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_r50vd_dcn_270e_coco.pdparams) |
|
|
|
+| ResNet34 | 608 | ---- | 36.2 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_r34_270e_coco.pdparams) |
|
|
|
+| MobileNet-V1 | 608 | ---- | 29.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams) |
|
|
|
+| MobileNet-V3 | 608 | ---- | 31.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_coco.pdparams) |
|
|
|
+| MobileNet-V1-SSLD | 608 | ---- | 31.0 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_coco.pdparams) |
|
|
|
+
|
|
|
|
|
|
### YOLOv3 on Pasacl VOC
|
|
|
|
|
|
-| 骨架网络 | 输入尺寸 | 每张GPU图片个数 |推理时间(fps)| Box AP | 下载 |
|
|
|
-| :----------- | :--: | :-----: | :-----: |:------------: |:----: |
|
|
|
-| MobileNet-V1 | 608 | 8 | 270e | - | 75.2 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_voc.pdparams) |
|
|
|
-| MobileNet-V3 | 608 | 8 | 270e | - | 79.6 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_voc.pdparams) |
|
|
|
-| MobileNet-V1-SSLD | 608 | 8 | 270e | - | 78.3 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_voc.pdparams) |
|
|
|
-| MobileNet-V3-SSLD | 608 | 8 | 270e | - | 80.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_ssld_270e_voc.pdparams) |
|
|
|
+| 骨架网络 | 输入尺寸 |推理时间(fps)| Box AP | 下载 |
|
|
|
+| :----------- | :--: | :-----: |:------------: |:----: |:----: |
|
|
|
+| MobileNet-V1 | 608 | - | 75.2 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_voc.pdparams) |
|
|
|
+| MobileNet-V3 | 608 | - | 79.6 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_voc.pdparams) |
|
|
|
+| MobileNet-V1-SSLD | 608 | - | 78.3 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_voc.pdparams) |
|
|
|
+| MobileNet-V3-SSLD | 608 | - | 80.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_ssld_270e_voc.pdparams) |
|
|
|
|
|
|
|
|
|
### PP-YOLO on COCO
|
|
|
|
|
|
-| 模型 | GPU个数 | 每GPU图片个数 | 骨干网络 | 输入尺寸 | Box AP<sup>val</sup> | Box AP<sup>test</sup> | V100 FP32(FPS) | V100 TensorRT FP16(FPS) | 模型下载 |
|
|
|
-|:------------------------:|:-------:|:-------------:|:----------:| :-------:| :------------------: | :-------------------: | :------------: | :---------------------: | :------: |
|
|
|
-| PP-YOLO | 8 | 24 | ResNet50vd | 608 | 44.8 | 45.2 | 72.9 | 155.6 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams) |
|
|
|
-| PP-YOLOv2 | 8 | 12 | ResNet50vd | 640 | 49.1 | 49.5 | 68.9 | 106.5 | [model](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams) |
|
|
|
-| PP-YOLOv2 | 8 | 12 | ResNet101vd | 640 | 49.7 | 50.3 | 49.5 | 87.0 | [model](https://paddledet.bj.bcebos.com/models/ppyolov2_r101vd_dcn_365e_coco.pdparams) |
|
|
|
+| 模型 | 骨干网络 | 输入尺寸 | Box AP<sup>val</sup> | Box AP<sup>test</sup> | V100 FP32(FPS) | V100 TensorRT FP16(FPS) | 模型下载 |
|
|
|
+|:------------------------:|:----------:| :-------:| :------------------: | :-------------------: | :------------: | :---------------------: | :------: |
|
|
|
+| PP-YOLO | ResNet50vd | 608 | 44.8 | 45.2 | 72.9 | 155.6 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams) |
|
|
|
+| PP-YOLOv2 | ResNet50vd | 640 | 49.1 | 49.5 | 68.9 | 106.5 | [model](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams) |
|
|
|
+| PP-YOLOv2 | ResNet101vd | 640 | 49.7 | 50.3 | 49.5 | 87.0 | [model](https://paddledet.bj.bcebos.com/models/ppyolov2_r101vd_dcn_365e_coco.pdparams) |
|
|
|
|
|
|
**注意:**
|
|
|
|
|
|
@@ -141,16 +142,16 @@
|
|
|
### PP-YOLO on Pascal VOC
|
|
|
|
|
|
|
|
|
-| 模型 | GPU个数 | 每GPU图片个数 | 骨干网络 | 输入尺寸 | Box AP50<sup>val</sup> | 模型下载 |
|
|
|
-|:------------------:|:-------:|:-------------:|:----------:| :----------:| :--------------------: | :------: |
|
|
|
-| PP-YOLO | 8 | 12 | ResNet50vd | 608 | 84.9 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_voc.pdparams) |
|
|
|
+| 模型 | 骨干网络 | 输入尺寸 | Box AP50<sup>val</sup> | 模型下载 |
|
|
|
+|:------------------:| :----------:| :----------:| :--------------------: | :------: |
|
|
|
+| PP-YOLO | ResNet50vd | 608 | 84.9 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_voc.pdparams) |
|
|
|
|
|
|
|
|
|
### PP-YOLO tiny on COCO
|
|
|
|
|
|
-| 模型 | GPU 个数 | 每GPU图片个数 | 模型体积 | 后量化模型体积 | 输入尺寸 | Box AP<sup>val</sup> | Kirin 990 1xCore (FPS) | 模型下载 | 量化后模型 |
|
|
|
-|:----------------------------:|:----------:|:-------------:| :--------: | :------------: | :----------:| :------------------: | :--------------------: | :------: | :------: |
|
|
|
-| PP-YOLO tiny | 8 | 32 | 4.2MB | **1.3M** | 416 | 22.7 | 65.4 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_650e_coco.pdparams) | [预测模型](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_quant.tar) |
|
|
|
+| 模型 | 模型体积 | 后量化模型体积 | 输入尺寸 | Box AP<sup>val</sup> | Kirin 990 1xCore (FPS) | 模型下载 | 量化后模型 |
|
|
|
+|:----------------------------:| :--------: | :------------: | :----------:| :------------------: | :--------------------: | :------: | :------: |
|
|
|
+| PP-YOLO tiny | 4.2MB | **1.3M** | 416 | 22.7 | 65.4 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_650e_coco.pdparams) | [预测模型](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_quant.tar) |
|
|
|
|
|
|
- PP-YOLO-tiny 模型推理速度测试环境配置为麒麟990芯片4线程,arm8架构。
|
|
|
- 我们也提供的PP-YOLO-tiny的后量化压缩模型,将模型体积压缩到**1.3M**,对精度和预测速度基本无影响
|
|
|
@@ -164,40 +165,40 @@
|
|
|
- 除非特殊说明,所有ResNet骨干网络采用[ResNet-B](https://arxiv.org/pdf/1812.01187)结构。
|
|
|
- **推理时间(fps)**: 推理时间是在一张Tesla V100的GPU上测试所有验证集得到,单位是fps(图片数/秒), cuDNN版本是7.5,包括数据加载、网络前向执行和后处理, batch size是1。
|
|
|
|
|
|
-| 骨架网络 | 网络类型 | 每张GPU图片个数 |推理时间(fps) | Box AP | Mask AP | 下载 |
|
|
|
-| :------------------- | :------------| :-----: | :-----: | :------------: | :-----: | :-----: | :-----------------------------------------------------: |
|
|
|
-| ResNet50 | Mask | 1 | ---- | 37.4 | 32.8 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_1x_coco.pdparams) |
|
|
|
-| ResNet50 | Mask | 1 | ---- | 39.7 | 34.5 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_2x_coco.pdparams) |
|
|
|
-| ResNet50-FPN | Mask | 1 | ---- | 39.2 | 35.6 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_fpn_1x_coco.pdparams) |
|
|
|
-| ResNet50-FPN | Mask | 1 | ---- | 40.5 | 36.7 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_fpn_2x_coco.pdparams) |
|
|
|
-| ResNet50-vd-FPN | Mask | 1 | ---- | 40.3 | 36.4 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_1x_coco.pdparams) |
|
|
|
-| ResNet50-vd-FPN | Mask | 1 | ---- | 41.4 | 37.5 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_2x_coco.pdparams) |
|
|
|
-| ResNet101-FPN | Mask | 1 | ---- | 40.6 | 36.6 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r101_fpn_1x_coco.pdparams) |
|
|
|
-| ResNet101-vd-FPN | Mask | 1 | ---- | 42.4 | 38.1 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r101_vd_fpn_1x_coco.pdparams) |
|
|
|
-| ResNeXt101-vd-FPN | Mask | 1 | ---- | 44.0 | 39.5 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_x101_vd_64x4d_fpn_1x_coco.pdparams) |
|
|
|
-| ResNeXt101-vd-FPN | Mask | 1 | ---- | 44.6 | 39.8 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_x101_vd_64x4d_fpn_2x_coco.pdparams) | (https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mask_rcnn/mask_rcnn_x101_vd_64x4d_fpn_2x_coco.yml) |
|
|
|
-| ResNet50-vd-SSLDv2-FPN | Mask | 1 | ---- | 42.0 | 38.2 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) |
|
|
|
-| ResNet50-vd-SSLDv2-FPN | Mask | 1 | ---- | 42.7 | 38.9 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) |
|
|
|
+| 骨架网络 | 网络类型 | 推理时间(fps) | Box AP | Mask AP | 下载 |
|
|
|
+| :------------------- | :------------| :-----: | :------------: | :-----: | :-----------------------------------------------------: |
|
|
|
+| ResNet50 | Mask | ---- | 37.4 | 32.8 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_1x_coco.pdparams) |
|
|
|
+| ResNet50 | Mask | ---- | 39.7 | 34.5 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_2x_coco.pdparams) |
|
|
|
+| ResNet50-FPN | Mask | ---- | 39.2 | 35.6 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_fpn_1x_coco.pdparams) |
|
|
|
+| ResNet50-FPN | Mask | ---- | 40.5 | 36.7 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_fpn_2x_coco.pdparams) |
|
|
|
+| ResNet50-vd-FPN | Mask | ---- | 40.3 | 36.4 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_1x_coco.pdparams) |
|
|
|
+| ResNet50-vd-FPN | Mask | ---- | 41.4 | 37.5 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_2x_coco.pdparams) |
|
|
|
+| ResNet101-FPN | Mask | ---- | 40.6 | 36.6 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r101_fpn_1x_coco.pdparams) |
|
|
|
+| ResNet101-vd-FPN | Mask | ---- | 42.4 | 38.1 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r101_vd_fpn_1x_coco.pdparams) |
|
|
|
+| ResNeXt101-vd-FPN | Mask | ---- | 44.0 | 39.5 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_x101_vd_64x4d_fpn_1x_coco.pdparams) |
|
|
|
+| ResNeXt101-vd-FPN | Mask | ---- | 44.6 | 39.8 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_x101_vd_64x4d_fpn_2x_coco.pdparams) | (https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mask_rcnn/mask_rcnn_x101_vd_64x4d_fpn_2x_coco.yml) |
|
|
|
+| ResNet50-vd-SSLDv2-FPN | Mask | ---- | 42.0 | 38.2 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) |
|
|
|
+| ResNet50-vd-SSLDv2-FPN | Mask | ---- | 42.7 | 38.9 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) |
|
|
|
|
|
|
|
|
|
## 语义分割模型
|
|
|
|
|
|
> 以下指标均在Pascal VOC验证集上测试得到,表中符号`-`表示相关指标暂未测试。
|
|
|
|
|
|
-| Model | Backbone | Resolution | Training Iters | mIoU | Links |
|
|
|
-|:-:|:-:|:-:|:-:|:-:|:-:|
|
|
|
-|DeepLabV3P|ResNet50_vd|512x512|40000|80.66%|81.33%|81.49%|[model](https://bj.bcebos.com/paddleseg/dygraph/pascal_voc12/deeplabv3p_resnet50_os8_voc12aug_512x512_40k/model.pdparams) |
|
|
|
-|DeepLabV3P|ResNet101_vd|512x512|40000|80.60%|80.77%|80.75%|[model](https://bj.bcebos.com/paddleseg/dygraph/pascal_voc12/deeplabv3p_resnet101_os8_voc12aug_512x512_40k/model.pdparams) |
|
|
|
+| Model | Backbone | Resolution | mIoU | Links |
|
|
|
+|:-:|:-:|:-:|:-:|:-:|
|
|
|
+|DeepLabV3P|ResNet50_vd|512x512|80.66%|[model](https://bj.bcebos.com/paddleseg/dygraph/pascal_voc12/deeplabv3p_resnet50_os8_voc12aug_512x512_40k/model.pdparams) |
|
|
|
+|DeepLabV3P|ResNet101_vd|512x512|80.60%|[model](https://bj.bcebos.com/paddleseg/dygraph/pascal_voc12/deeplabv3p_resnet101_os8_voc12aug_512x512_40k/model.pdparams) |
|
|
|
|
|
|
|
|
|
> 以下指标均在Cityscapes验证集上测试得到,表中符号`-`表示相关指标暂未测试。
|
|
|
|
|
|
-| Model | Backbone | Resolution | Training Iters | Batch Size | mIoU | Links |
|
|
|
-|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
|
|
|
-|UNet|-|1024x512|160000|4|65.00%|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/unet_cityscapes_1024x512_160k/model.pdparams) |
|
|
|
-|DeepLabV3P|ResNet50_vd|1024x512|80000|80.36%|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/deeplabv3p_resnet50_os8_cityscapes_1024x512_80k/model.pdparams) |
|
|
|
-|DeepLabV3P|ResNet101_vd|1024x512|80000|81.10%|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/deeplabv3p_resnet101_os8_cityscapes_1024x512_80k/model.pdparams) |
|
|
|
-|Fast SCNN|-|1024x1024|160000|69.31%|-|-|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/fastscnn_cityscapes_1024x1024_160k/model.pdparams) |
|
|
|
-|HRNet_W18|-|1024x512|80000|78.97%|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/fcn_hrnetw18_cityscapes_1024x512_80k/model.pdparams) |
|
|
|
-|HRNet_W48|-|1024x512|80000|80.70%|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/fcn_hrnetw48_cityscapes_1024x512_80k/model.pdparams) |
|
|
|
-|BiSeNetv2|-|1024x1024|160000|73.19%|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/bisenet_cityscapes_1024x1024_160k/model.pdparams) |
|
|
|
+| Model | Backbone | Resolution | mIoU | Links |
|
|
|
+|:-:|:-:|:-:|:-:|:-:|
|
|
|
+|UNet|-|1024x512|65.00%|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/unet_cityscapes_1024x512_160k/model.pdparams) |
|
|
|
+|DeepLabV3P|ResNet50_vd|1024x512|80.36%|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/deeplabv3p_resnet50_os8_cityscapes_1024x512_80k/model.pdparams) |
|
|
|
+|DeepLabV3P|ResNet101_vd|1024x512|81.10%|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/deeplabv3p_resnet101_os8_cityscapes_1024x512_80k/model.pdparams) |
|
|
|
+|Fast SCNN|-|1024x1024|69.31%|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/fastscnn_cityscapes_1024x1024_160k/model.pdparams) |
|
|
|
+|HRNet_W18|-|1024x512|78.97%|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/fcn_hrnetw18_cityscapes_1024x512_80k/model.pdparams) |
|
|
|
+|HRNet_W48|-|1024x512|80.70%|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/fcn_hrnetw48_cityscapes_1024x512_80k/model.pdparams) |
|
|
|
+|BiSeNetv2|-|1024x1024|73.19%|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/bisenet_cityscapes_1024x1024_160k/model.pdparams) |
|