|
|
@@ -0,0 +1,114 @@
|
|
|
+# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
|
|
|
+#
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
+# You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
+# limitations under the License.
|
|
|
+
|
|
|
+
|
|
|
+import os
|
|
|
+import json
|
|
|
+from tqdm import tqdm
|
|
|
+from pycocotools.coco import COCO
|
|
|
+from .....utils.errors import ConvertFailedError
|
|
|
+from .....utils.logging import info, warning
|
|
|
+
|
|
|
+
|
|
|
+def check_src_dataset(root_dir, dataset_type):
|
|
|
+ """check src dataset format validity"""
|
|
|
+ if dataset_type in ("COCO"):
|
|
|
+ anno_suffix = ".json"
|
|
|
+ else:
|
|
|
+ raise ConvertFailedError(
|
|
|
+ message=f"数据格式转换失败!不支持{dataset_type}格式数据集。当前仅支持 COCO 格式。"
|
|
|
+ )
|
|
|
+
|
|
|
+ err_msg_prefix = f"数据格式转换失败!请参考上述`{dataset_type}格式数据集示例`检查待转换数据集格式。"
|
|
|
+
|
|
|
+ for anno in ["annotations/instance_train.json", "annotations/instance_val.json"]:
|
|
|
+ src_anno_path = os.path.join(root_dir, anno)
|
|
|
+ if not os.path.exists(src_anno_path):
|
|
|
+ raise ConvertFailedError(
|
|
|
+ message=f"{err_msg_prefix}保证{src_anno_path}文件存在。"
|
|
|
+ )
|
|
|
+ return None
|
|
|
+
|
|
|
+
|
|
|
+def convert(dataset_type, input_dir):
|
|
|
+ """convert dataset to multilabel format"""
|
|
|
+ # check format validity
|
|
|
+ check_src_dataset(input_dir, dataset_type)
|
|
|
+
|
|
|
+ if dataset_type in ("COCO"):
|
|
|
+ convert_coco_dataset(input_dir)
|
|
|
+ else:
|
|
|
+ raise ConvertFailedError(
|
|
|
+ message=f"数据格式转换失败!不支持{dataset_type}格式数据集。当前仅支持 COCO 格式。"
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+def convert_coco_dataset(root_dir):
|
|
|
+ for anno in ["annotations/instance_train.json", "annotations/instance_val.json"]:
|
|
|
+ src_img_dir = root_dir
|
|
|
+ src_anno_path = os.path.join(root_dir, anno)
|
|
|
+ coco2multilabels(src_img_dir, src_anno_path, root_dir)
|
|
|
+
|
|
|
+
|
|
|
+def coco2multilabels(src_img_dir, src_anno_path, root_dir):
|
|
|
+ image_dir = os.path.join(root_dir, "images")
|
|
|
+ label_type = os.path.basename(src_anno_path).replace("instance_","").replace(".json","")
|
|
|
+ anno_save_path = os.path.join(root_dir, "{}.txt".format(label_type))
|
|
|
+ coco = COCO(src_anno_path)
|
|
|
+ cat_id_map = {
|
|
|
+ old_cat_id: new_cat_id
|
|
|
+ for new_cat_id, old_cat_id in enumerate(coco.getCatIds())
|
|
|
+ }
|
|
|
+ num_classes = len(list(cat_id_map.keys()))
|
|
|
+
|
|
|
+ with open(anno_save_path, 'w') as fp:
|
|
|
+ lines = []
|
|
|
+ for img_id in tqdm(sorted(coco.getImgIds())):
|
|
|
+ img_info = coco.loadImgs([img_id])[0]
|
|
|
+ img_filename = img_info['file_name']
|
|
|
+ img_w = img_info['width']
|
|
|
+ img_h = img_info['height']
|
|
|
+
|
|
|
+ img_filepath = os.path.join(image_dir, img_filename)
|
|
|
+ if not os.path.exists(img_filepath):
|
|
|
+ warning('Illegal image file: {}, '
|
|
|
+ 'and it will be ignored'.format(img_filepath))
|
|
|
+ continue
|
|
|
+
|
|
|
+ if img_w < 0 or img_h < 0:
|
|
|
+ warning(msg)(
|
|
|
+ 'Illegal width: {} or height: {} in annotation, '
|
|
|
+ 'and im_id: {} will be ignored'.format(img_w, img_h, img_id))
|
|
|
+ continue
|
|
|
+
|
|
|
+ ins_anno_ids = coco.getAnnIds(imgIds=[img_id])
|
|
|
+ instances = coco.loadAnns(ins_anno_ids)
|
|
|
+
|
|
|
+ label = [0] * num_classes
|
|
|
+ for instance in instances:
|
|
|
+ label[cat_id_map[instance['category_id']]] = 1
|
|
|
+ img_filename = os.path.join("images", img_filename)
|
|
|
+ fp.writelines("{}\t{}\n".format(img_filename, ','.join(map(str, label))))
|
|
|
+ fp.close()
|
|
|
+ if label_type == "train":
|
|
|
+ label_txt_save_path = os.path.join(root_dir, "label.txt")
|
|
|
+ with open(label_txt_save_path, 'w') as fp:
|
|
|
+ label_name_list = []
|
|
|
+ for cat in coco.cats.values():
|
|
|
+ id = cat["id"]
|
|
|
+ name = cat["name"]
|
|
|
+ fp.writelines("{} {}\n".format(id, name))
|
|
|
+ fp.close()
|
|
|
+ info("Save label names to {}.".format(label_txt_save_path))
|
|
|
+
|