Bläddra i källkod

remove repeated tutorial

will-jl944 4 år sedan
förälder
incheckning
fd051996b1
1 ändrade filer med 0 tillägg och 52 borttagningar
  1. 0 52
      dygraph/tutorials/train/semantic_segmentation/deeplabv3p.py

+ 0 - 52
dygraph/tutorials/train/semantic_segmentation/deeplabv3p.py

@@ -1,52 +0,0 @@
-import paddlex as pdx
-from paddlex import transforms as T
-
-# 下载和解压视盘分割数据集
-optic_dataset = 'https://bj.bcebos.com/paddlex/datasets/optic_disc_seg.tar.gz'
-pdx.utils.download_and_decompress(optic_dataset, path='./')
-
-# 定义训练和验证时的transforms
-# API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/transforms/operators.py
-train_transforms = T.Compose([
-    T.Resize(target_size=512),
-    T.RandomHorizontalFlip(),
-    T.Normalize(
-        mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
-])
-
-eval_transforms = T.Compose([
-    T.Resize(target_size=512),
-    T.Normalize(
-        mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
-])
-
-# 定义训练和验证所用的数据集
-# API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/datasets/seg_dataset.py#L22
-train_dataset = pdx.datasets.SegDataset(
-    data_dir='optic_disc_seg',
-    file_list='optic_disc_seg/train_list.txt',
-    label_list='optic_disc_seg/labels.txt',
-    transforms=train_transforms,
-    shuffle=True)
-
-eval_dataset = pdx.datasets.SegDataset(
-    data_dir='optic_disc_seg',
-    file_list='optic_disc_seg/val_list.txt',
-    label_list='optic_disc_seg/labels.txt',
-    transforms=eval_transforms,
-    shuffle=False)
-
-# 初始化模型,并进行训练
-# 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/tree/release/2.0-rc/tutorials/train#visualdl可视化训练指标
-num_classes = len(train_dataset.labels)
-model = pdx.seg.DeepLabV3P(num_classes=num_classes, backbone='ResNet50_vd')
-
-# API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/models/segmenter.py#L150
-# 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html
-model.train(
-    num_epochs=10,
-    train_dataset=train_dataset,
-    train_batch_size=4,
-    eval_dataset=eval_dataset,
-    learning_rate=0.01,
-    save_dir='output/deeplabv3p_r50vd')