# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import yaml import codecs from pathlib import Path from abc import abstractmethod import GPUtil from ...utils.subclass_register import AutoRegisterABCMetaClass from ..utils.device import constr_device from ...utils import logging from ..components.base import BaseComponent, ComponentsEngine from ..utils.pp_option import PaddlePredictorOption from ..utils.process_hook import generatorable_method def _get_default_device(): avail_gpus = GPUtil.getAvailable() if not avail_gpus: return "cpu" else: return constr_device("gpu", [avail_gpus[0]]) class BasePredictor(BaseComponent): KEEP_INPUT = False YIELD_BATCH = False INPUT_KEYS = "x" DEAULT_INPUTS = {"x": "x"} OUTPUT_KEYS = "result" DEAULT_OUTPUTS = {"result": "result"} MODEL_FILE_PREFIX = "inference" def __init__(self, model_dir, config=None, device=None, **kwargs): super().__init__() self.model_dir = Path(model_dir) self.config = config if config else self.load_config(self.model_dir) self.device = device if device else _get_default_device() self.kwargs = self._check_args(kwargs) # alias predict() to the __call__() self.predict = self.__call__ def __call__(self, *args, **kwargs): for res in super().__call__(*args, **kwargs): yield res["result"] @property def config_path(self): return self.get_config_path(self.model_dir) @property def model_name(self) -> str: return self.config["Global"]["model_name"] @abstractmethod def apply(self, x): raise NotImplementedError @classmethod def get_config_path(cls, model_dir): return model_dir / f"{cls.MODEL_FILE_PREFIX}.yml" @classmethod def load_config(cls, model_dir): config_path = cls.get_config_path(model_dir) with codecs.open(config_path, "r", "utf-8") as file: dic = yaml.load(file, Loader=yaml.FullLoader) return dic def _check_args(self, kwargs): return kwargs class BasicPredictor(BasePredictor, metaclass=AutoRegisterABCMetaClass): __is_base = True def __init__(self, model_dir, config=None, device=None, pp_option=None, **kwargs): super().__init__(model_dir=model_dir, config=config, device=device, **kwargs) self.pp_option = PaddlePredictorOption() if pp_option is None else pp_option self.pp_option.set_device(self.device) self.components = self._build_components() self.engine = ComponentsEngine(self.components) logging.debug( f"-------------------- {self.__class__.__name__} --------------------\nModel: {self.model_dir}\nEnv: {self.pp_option}" ) def apply(self, x): """predict""" yield from self._generate_res(self.engine(x)) @generatorable_method def _generate_res(self, batch_data): return [{"result": self._pack_res(data)} for data in batch_data] @abstractmethod def _build_components(self): raise NotImplementedError @abstractmethod def _pack_res(self, data): raise NotImplementedError