# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ...modules.image_unwarping.model_list import MODELS from ..components import * from ..results import DocTrResult from ..utils.process_hook import batchable_method from .base import BasicPredictor class WarpPredictor(BasicPredictor): entities = MODELS def _check_args(self, kwargs): assert set(kwargs.keys()).issubset(set(["batch_size"])) return kwargs def _build_components(self): ops = {} ops["ReadImage"] = ReadImage( format="RGB", batch_size=self.kwargs.get("batch_size", 1) ) ops["Normalize"] = Normalize(mean=0.0, std=1.0, scale=1.0 / 255) ops["ToCHWImage"] = ToCHWImage() predictor = ImagePredictor( model_dir=self.model_dir, model_prefix=self.MODEL_FILE_PREFIX, option=self.pp_option, ) ops["predictor"] = predictor ops["postprocess"] = DocTrPostProcess() return ops @batchable_method def _pack_res(self, single): keys = ["img_path", "doctr_img"] return DocTrResult({key: single[key] for key in keys})