# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np from pathlib import Path from ...base import BasePredictor from ...base.predictor.transforms import image_common from .keys import WarpKeys as K from . import transforms as T from ..model_list import MODELS class WarpPredictor(BasePredictor): """Clssification Predictor""" entities = MODELS @classmethod def get_input_keys(cls): """get input keys""" return [[K.IMAGE], [K.IM_PATH]] @classmethod def get_output_keys(cls): """get output keys""" return [K.DOCTR_IMG] def _run(self, batch_input): """run""" input_dict = {} input_dict[K.IMAGE] = np.stack( [data[K.IMAGE] for data in batch_input], axis=0 ).astype(dtype=np.float32, copy=False) input_ = [input_dict[K.IMAGE]] outputs = self._predictor.predict(input_) Warp_outs = outputs[0] # In-place update pred = batch_input for dict_, Warp_out in zip(pred, Warp_outs): dict_[K.DOCTR_IMG] = Warp_out return pred def _get_pre_transforms_from_config(self): """get preprocess transforms""" pre_transforms = [ image_common.ReadImage(format='RGB'), image_common.Normalize(scale=1./255, mean=0.0, std=1.0), image_common.ToCHWImage() ] return pre_transforms def _get_post_transforms_from_config(self): """get postprocess transforms""" post_transforms = [ T.DocTrPostProcess(scale=255.), T.SaveDocTrResults(self.output) ] # yapf: disable return post_transforms