# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import operator from functools import reduce import paddle import paddle.nn.functional as F class IndexFirstAxis(paddle.autograd.PyLayer): @staticmethod def forward(ctx, input, indices): from einops import rearrange, repeat ctx.save_for_backward(indices) assert input.ndim >= 2 ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:] second_dim = reduce(operator.mul, other_shape, 1) return paddle.take_along_axis( arr=rearrange(input, "b ... -> b (...)"), axis=0, indices=repeat(indices, "z -> z d", d=second_dim), ).reshape([-1, *other_shape]) @staticmethod def backward(ctx, grad_output): """Class Attribute: torch.autograd.function.FunctionCtx.saved_tensors, can not convert, please check whether it is torch.Tensor.*/torch.autograd.function.FunctionCtx.*/torch.distributions.Distribution.* and convert manually""" from einops import rearrange, repeat (indices,) = ctx.saved_tensor() assert grad_output.ndim >= 2 other_shape = grad_output.shape[1:] grad_output = rearrange(grad_output, "b ... -> b (...)") grad_input = paddle.zeros( shape=[ctx.first_axis_dim, tuple(grad_output.shape)[1]], dtype=grad_output.dtype, ) grad_input.put_along_axis_( axis=0, indices=repeat(indices, "z -> z d", d=tuple(grad_output.shape)[1]), values=grad_output, ) return grad_input.reshape([ctx.first_axis_dim, *other_shape]), None index_first_axis = IndexFirstAxis.apply class IndexPutFirstAxis(paddle.autograd.PyLayer): @staticmethod def forward(ctx, values, indices, first_axis_dim): ctx.save_for_backward(indices) assert indices.ndim == 1 assert values.ndim >= 2 output = paddle.zeros( shape=[first_axis_dim, *tuple(values.shape)[1:]], dtype=values.dtype ) output[indices] = values return output @staticmethod def backward(ctx, grad_output): """Class Attribute: torch.autograd.function.FunctionCtx.saved_tensors, can not convert, please check whether it is torch.Tensor.*/torch.autograd.function.FunctionCtx.*/torch.distributions.Distribution.* and convert manually""" (indices,) = ctx.saved_tensor() grad_values = grad_output[indices] return grad_values, None index_put_first_axis = IndexPutFirstAxis.apply def unpad_input(hidden_states, attention_mask): """ Arguments: hidden_states: (batch, seqlen, ...) attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid. Return: hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence. cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states. max_seqlen_in_batch: int """ from einops import rearrange seqlens_in_batch = paddle.sum(attention_mask, axis=-1, dtype="int32") indices = paddle.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = paddle.max(seqlens_in_batch).item() cu_seqlens = F.pad(paddle.cumsum(seqlens_in_batch, axis=0), [1, 0]) return ( index_first_axis(rearrange(hidden_states, "b s ... -> (b s) ..."), indices), indices, cu_seqlens, max_seqlen_in_batch, ) def pad_input(hidden_states, indices, batch, seqlen): """ Arguments: hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. indices: (total_nnz), the indices that represent the non-masked tokens of the original padded input sequence. batch: int, batch size for the padded sequence. seqlen: int, maximum sequence length for the padded sequence. Return: hidden_states: (batch, seqlen, ...) """ from einops import rearrange output = index_put_first_axis(hidden_states, indices, batch * seqlen) return rearrange(output, "(b s) ... -> b s ...", b=batch)