# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file is based on https://github.com/Kwai-Keye/Keye/blob/main/keye-vl-8b-preview/configuration_keye.py # Original header: # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ......utils.device import parse_device from ......utils.env import get_paddle_cuda_version from ....common.vlm.transformers import PretrainedConfig class PaddleOCRVisionConfig(PretrainedConfig): model_type = "paddleocr_vl" base_config_key = "vision_config" def __init__( self, hidden_size=768, intermediate_size=3072, num_hidden_layers=12, num_attention_heads=12, num_channels=3, image_size=224, patch_size=14, hidden_act="gelu_pytorch_tanh", layer_norm_eps=1e-6, attention_dropout=0.0, spatial_merge_size=2, temporal_patch_size=2, tokens_per_second=2, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.patch_size = patch_size self.image_size = image_size self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.spatial_merge_size = spatial_merge_size self.temporal_patch_size = temporal_patch_size self.tokens_per_second = tokens_per_second class PaddleOCRVLConfig(PretrainedConfig): model_type = "paddleocr_vl" keys_to_ignore_at_inference = ["past_key_values"] sub_configs = {"vision_config": PaddleOCRVisionConfig} base_model_tp_plan = { "layers.*.self_attn.q_proj": "colwise", "layers.*.self_attn.k_proj": "colwise", "layers.*.self_attn.v_proj": "colwise", "layers.*.self_attn.o_proj": "rowwise", "layers.*.mlp.gate_proj": "colwise", "layers.*.mlp.up_proj": "colwise", "layers.*.mlp.down_proj": "rowwise", } base_model_pp_plan = { "embed_tokens": (["input_ids"], ["inputs_embeds"]), "layers": (["hidden_states", "attention_mask"], ["hidden_states"]), "norm": (["hidden_states"], ["hidden_states"]), } def __init__( self, vocab_size=32000, hidden_size=768, intermediate_size=11008, max_position_embeddings=32768, num_hidden_layers=2, num_attention_heads=2, image_token_id=101304, video_token_id=101305, vision_start_token_id=101306, rope_scaling=None, rms_norm_eps=1e-6, use_cache=False, use_flash_attention=False, pad_token_id=0, bos_token_id=1, eos_token_id=2, head_dim=128, hidden_act="silu", use_bias=False, rope_theta=10000, weight_share_add_bias=True, ignored_index=-100, attention_probs_dropout_prob=0.0, hidden_dropout_prob=0.0, compression_ratio: float = 1.0, num_key_value_heads=None, max_sequence_length=None, tie_word_embeddings=False, vision_config=None, **kwargs, ): import paddle # Set default for tied embeddings if not specified. super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs, ) if isinstance(vision_config, dict): self.vision_config = self.sub_configs["vision_config"](**vision_config) elif vision_config is None: self.vision_config = self.sub_configs["vision_config"]() self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.max_position_embeddings = max_position_embeddings self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.rope_scaling = rope_scaling self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.use_flash_attention = use_flash_attention self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.image_token_id = image_token_id self.video_token_id = video_token_id self.vision_start_token_id = vision_start_token_id self.head_dim = head_dim if hidden_act != "silu": raise NotImplementedError self.hidden_act = hidden_act self.hidden_size = hidden_size self.use_bias = use_bias self.weight_share_add_bias = weight_share_add_bias self.rope_theta = rope_theta self.ignored_index = ignored_index self.attention_probs_dropout_prob = attention_probs_dropout_prob self.hidden_dropout_prob = hidden_dropout_prob self.compression_ratio = compression_ratio self.num_key_value_heads = num_key_value_heads self.max_sequence_length = max_sequence_length super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) # Currently, these configuration items are hard-coded self.fuse_rms_norm = False device_type, _ = parse_device(paddle.device.get_device()) if device_type == "gpu": cuda_version = get_paddle_cuda_version() if cuda_version and cuda_version[0] > 11: self.fuse_rms_norm = True self.use_sparse_flash_attn = True self.use_var_len_flash_attn = False self.scale_qk_coeff = 1.0 self.fuse_softmax_mask = False self.use_sparse_head_and_loss_fn = False self.use_recompute_loss_fn = False self.use_fused_head_and_loss_fn = False self.fuse_linear = False self.token_balance_seqlen = False self.use_rmsnorm = True self.fuse_ln = False self.cachekv_quant = False self.fuse_swiglu = False self.freq_allocation = 20