# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional from ...utils.benchmark import benchmark from ..object_detection.processors import restructured_boxes def extract_masks_from_boxes(boxes, masks): """ Extracts the portion of each mask that is within the corresponding box. """ new_masks = [] for i, box in enumerate(boxes): x_min, y_min, x_max, y_max = box["coordinate"] x_min, y_min, x_max, y_max = map( lambda x: int(round(x)), [x_min, y_min, x_max, y_max] ) cropped_mask = masks[i][y_min:y_max, x_min:x_max] new_masks.append(cropped_mask) return new_masks @benchmark.timeit class InstanceSegPostProcess(object): """Save Result Transform""" def __init__(self, threshold=0.5, labels=None): super().__init__() self.threshold = threshold self.labels = labels def apply(self, masks, img_size, boxes=None, class_id=None, threshold=None): """apply""" if boxes is not None: expect_boxes = (boxes[:, 1] > threshold) & (boxes[:, 0] > -1) boxes = boxes[expect_boxes, :] boxes = restructured_boxes(boxes, self.labels, img_size) masks = masks[expect_boxes, :, :] masks = extract_masks_from_boxes(boxes, masks) result = {"boxes": boxes, "masks": masks} else: mask_info = [] class_id = [list(item) for item in zip(class_id[0], class_id[1])] selected_masks = [] for i, info in enumerate(class_id): label_id = int(info[0]) if info[1] < threshold: continue mask_info.append( { "label": self.labels[label_id], "score": info[1], "class_id": label_id, } ) selected_masks.append(masks[i]) result = {"boxes": mask_info, "masks": selected_masks} return result def __call__( self, batch_outputs: List[dict], datas: List[dict], threshold: Optional[float] = None, ): """Apply the post-processing to a batch of outputs. Args: batch_outputs (List[dict]): The list of detection outputs. datas (List[dict]): The list of input data. threshold: Optional[float]: object score threshold for postprocess. Returns: List[Boxes]: The list of post-processed detection boxes. """ outputs = [] for data, output in zip(datas, batch_outputs): boxes_masks = self.apply( img_size=data["ori_img_size"], **output, threshold=threshold if threshold is not None else self.threshold ) outputs.append(boxes_masks) return outputs