import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' from paddlex.det import transforms import paddlex as pdx insect_dataset = 'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz' pdx.utils.download_and_decompress(insect_dataset, path='./') train_transforms = transforms.Compose([ transforms.MixupImage(mixup_epoch=250), transforms.RandomDistort(), transforms.RandomExpand(), transforms.RandomCrop(), transforms.Resize( target_size=608, interp='RANDOM'), transforms.RandomHorizontalFlip(), transforms.Normalize(), ]) eval_transforms = transforms.Compose([ transforms.Resize( target_size=608, interp='CUBIC'), transforms.Normalize(), ]) train_dataset = pdx.datasets.VOCDetection( data_dir='insect_det', file_list='insect_det/train_list.txt', label_list='insect_det/labels.txt', transforms=train_transforms, shuffle=True) eval_dataset = pdx.datasets.VOCDetection( data_dir='insect_det', file_list='insect_det/val_list.txt', label_list='insect_det/labels.txt', transforms=eval_transforms) num_classes = len(train_dataset.labels) model = pdx.det.YOLOv3(num_classes=num_classes, backbone='MobileNetV1') model.train( num_epochs=270, train_dataset=train_dataset, train_batch_size=8, eval_dataset=eval_dataset, learning_rate=0.000125, lr_decay_epochs=[210, 240], pretrain_weights='output/yolov3_mobilenetv1/best_model', save_dir='output/yolov3_mobilenetv1_prune', sensitivities_file='./yolov3.sensi.data', eval_metric_loss=0.05, use_vdl=True)