import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' import paddlex as pdx from paddlex.seg import transforms optic_dataset = 'https://bj.bcebos.com/paddlex/datasets/optic_disc_seg.tar.gz' pdx.utils.download_and_decompress(optic_dataset, path='./') train_transforms = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.ResizeRangeScaling(), transforms.RandomPaddingCrop(crop_size=512), transforms.Normalize() ]) eval_transforms = transforms.Compose([ transforms.ResizeByLong(long_size=512), transforms.Padding(target_size=512), transforms.Normalize() ]) train_dataset = pdx.datasets.SegDataset( data_dir='optic_disc_seg', file_list='optic_disc_seg/train_list.txt', label_list='optic_disc_seg/labels.txt', transforms=train_transforms, shuffle=True) eval_dataset = pdx.datasets.SegDataset( data_dir='optic_disc_seg', file_list='optic_disc_seg/val_list.txt', label_list='optic_disc_seg/labels.txt', transforms=eval_transforms) num_classes = len(train_dataset.labels) model = pdx.seg.UNet(num_classes=num_classes) model.train( num_epochs=20, train_dataset=train_dataset, train_batch_size=4, eval_dataset=eval_dataset, learning_rate=0.01, save_dir='output/unet', use_vdl=True)