import paddlex as pdx from paddlex import transforms as T # 下载和解压小度熊分拣数据集 dataset = 'https://bj.bcebos.com/paddlex/datasets/xiaoduxiong_ins_det.tar.gz' pdx.utils.download_and_decompress(dataset, path='./') # 定义训练和验证时的transforms # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/transforms/operators.py train_transforms = T.Compose([ T.RandomResizeByShort( short_sizes=[640, 672, 704, 736, 768, 800], max_size=1333, interp='CUBIC'), T.RandomHorizontalFlip(), T.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) eval_transforms = T.Compose([ T.ResizeByShort( short_size=800, max_size=1333, interp='CUBIC'), T.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # 定义训练和验证所用的数据集 # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/dygraph/paddlex/cv/datasets/coco.py#L26 train_dataset = pdx.datasets.CocoDetection( data_dir='xiaoduxiong_ins_det/JPEGImages', ann_file='xiaoduxiong_ins_det/train.json', transforms=train_transforms, shuffle=True) eval_dataset = pdx.datasets.CocoDetection( data_dir='xiaoduxiong_ins_det/JPEGImages', ann_file='xiaoduxiong_ins_det/val.json', transforms=eval_transforms) # 加载模型 model = pdx.load_model('output/mask_rcnn_r50_fpn/best_model') # 在线量化 model.quant_aware_train( num_epochs=6, train_dataset=train_dataset, train_batch_size=1, eval_dataset=eval_dataset, learning_rate=0.000125, save_dir='output/mask_rcnn_r50_fpn/quant', use_vdl=True)