// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "ultra_infer/ultra_infer_model.h" #include "ultra_infer/vision/common/processors/transform.h" #include "ultra_infer/vision/common/result.h" #include "ultra_infer/vision/detection/ppdet/postprocessor.h" #include "ultra_infer/vision/detection/ppdet/preprocessor.h" #include "ultra_infer/vision/utils/utils.h" namespace ultra_infer { namespace vision { /** \brief All object detection model APIs are defined inside this namespace * */ namespace detection { /*! @brief Base model object used when to load a model exported by * PaddleDetection */ class ULTRAINFER_DECL PPDetBase : public UltraInferModel { public: /** \brief Set path of model file and configuration file, and the * configuration of runtime * * \param[in] model_file Path of model file, e.g ppyoloe/model.pdmodel * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, * if the model format is ONNX, this parameter will be ignored \param[in] * config_file Path of configuration file for deployment, e.g * ppyoloe/infer_cfg.yml \param[in] custom_option RuntimeOption for inference, * the default will use cpu, and choose the backend defined in * `valid_cpu_backends` \param[in] model_format Model format of the loaded * model, default is Paddle format */ PPDetBase(const std::string &model_file, const std::string ¶ms_file, const std::string &config_file, const RuntimeOption &custom_option = RuntimeOption(), const ModelFormat &model_format = ModelFormat::PADDLE); /** \brief Clone a new PaddleDetModel with less memory usage when multiple * instances of the same model are created * * \return new PaddleDetModel* type unique pointer */ virtual std::unique_ptr Clone() const; /// Get model's name virtual std::string ModelName() const { return "PaddleDetection/BaseModel"; } /** \brief DEPRECATED Predict the detection result for an input image * * \param[in] im The input image data, comes from cv::imread(), is a 3-D array * with layout HWC, BGR format \param[in] result The output detection result * \return true if the prediction succeeded, otherwise false */ virtual bool Predict(cv::Mat *im, DetectionResult *result); /** \brief Predict the detection result for an input image * \param[in] im The input image data, comes from cv::imread(), is a 3-D array * with layout HWC, BGR format \param[in] result The output detection result * \return true if the prediction succeeded, otherwise false */ virtual bool Predict(const cv::Mat &im, DetectionResult *result); /** \brief Predict the detection result for an input image list * \param[in] im The input image list, all the elements come from * cv::imread(), is a 3-D array with layout HWC, BGR format \param[in] results * The output detection result list \return true if the prediction succeeded, * otherwise false */ virtual bool BatchPredict(const std::vector &imgs, std::vector *results); PaddleDetPreprocessor &GetPreprocessor() { return preprocessor_; } PaddleDetPostprocessor &GetPostprocessor() { return postprocessor_; } virtual bool CheckArch(); protected: virtual bool Initialize(); PaddleDetPreprocessor preprocessor_; PaddleDetPostprocessor postprocessor_; }; } // namespace detection } // namespace vision } // namespace ultra_infer