# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path from ...base import BaseDatasetChecker from .dataset_src import check, split_dataset, deep_analyse from ..model_list import MODELS class ClsDatasetChecker(BaseDatasetChecker): """Dataset Checker for Image Classification Model """ entities = MODELS sample_num = 10 def get_dataset_root(self, dataset_dir: str) -> str: """find the dataset root dir Args: dataset_dir (str): the directory that contain dataset. Returns: str: the root directory of dataset. """ anno_dirs = list(Path(dataset_dir).glob("**/images")) assert len(anno_dirs) == 1 dataset_dir = anno_dirs[0].parent.as_posix() return dataset_dir def convert_dataset(self, src_dataset_dir: str) -> str: """convert the dataset from other type to specified type Args: src_dataset_dir (str): the root directory of dataset. Returns: str: the root directory of converted dataset. """ return src_dataset_dir def split_dataset(self, src_dataset_dir: str) -> str: """repartition the train and validation dataset Args: src_dataset_dir (str): the root directory of dataset. Returns: str: the root directory of splited dataset. """ return split_dataset(src_dataset_dir, self.check_dataset_config.split.train_percent, self.check_dataset_config.split.val_percent) def check_dataset(self, dataset_dir: str, sample_num: int=sample_num) -> dict: """check if the dataset meets the specifications and get dataset summary Args: dataset_dir (str): the root directory of dataset. sample_num (int): the number to be sampled. Returns: dict: dataset summary. """ return check(dataset_dir, self.output) def analyse(self, dataset_dir: str) -> dict: """deep analyse dataset Args: dataset_dir (str): the root directory of dataset. Returns: dict: the deep analysis results. """ return deep_analyse(dataset_dir, self.output) def get_show_type(self) -> str: """get the show type of dataset Returns: str: show type """ return "image" def get_dataset_type(self) -> str: """return the dataset type Returns: str: dataset type """ return "ClsDataset"