# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import os.path as osp import random from PIL import Image, ImageOps from collections import defaultdict from .....utils.errors import DatasetFileNotFoundError, CheckFailedError from .utils.visualizer import draw_label def check(dataset_dir, output, sample_num=10): """ check dataset """ dataset_dir = osp.abspath(dataset_dir) # Custom dataset if not osp.exists(dataset_dir) or not osp.isdir(dataset_dir): raise DatasetFileNotFoundError(file_path=dataset_dir) tags = ['train', 'val'] delim = ' ' valid_num_parts = 2 sample_cnts = dict() label_map_dict = dict() sample_paths = defaultdict(list) labels = [] label_file = osp.join(dataset_dir, 'label.txt') if not osp.exists(label_file): raise DatasetFileNotFoundError( file_path=label_file, solution=f"Ensure that `label.txt` exist in {dataset_dir}") with open(label_file, 'r', encoding='utf-8') as f: all_lines = f.readlines() for line in all_lines: substr = line.strip("\n").split(delim, 1) try: label_idx = int(substr[0]) labels.append(label_idx) label_map_dict[label_idx] = str(substr[1]) except: raise CheckFailedError( f"Ensure that the first number in each line in {label_file} should be int." ) if min(labels) != 0: raise CheckFailedError( f"Ensure that the index starts from 0 in `{label_file}`.") for tag in tags: file_list = osp.join(dataset_dir, f'{tag}.txt') if not osp.exists(file_list): if tag in ('train', 'val'): # train and val file lists must exist raise DatasetFileNotFoundError( file_path=file_list, solution=f"Ensure that both `train.txt` and `val.txt` exist in {dataset_dir}" ) else: # tag == 'test' continue else: with open(file_list, 'r', encoding='utf-8') as f: all_lines = f.readlines() random.seed(123) random.shuffle(all_lines) sample_cnts[tag] = len(all_lines) for line in all_lines: substr = line.strip("\n").split(delim) if len(substr) != valid_num_parts: raise CheckFailedError( f"The number of delimiter-separated items in each row in {file_list} \ should be {valid_num_parts} (current delimiter is '{delim}')." ) file_name = substr[0] label = substr[1] img_path = osp.join(dataset_dir, file_name) if not osp.exists(img_path): raise DatasetFileNotFoundError(file_path=img_path) vis_save_dir = osp.join(output, 'demo_img') if not osp.exists(vis_save_dir): os.makedirs(vis_save_dir) if len(sample_paths[tag]) < sample_num: img = Image.open(img_path) img = ImageOps.exif_transpose(img) vis_im = draw_label(img, label, label_map_dict) vis_path = osp.join(vis_save_dir, osp.basename(file_name)) vis_im.save(vis_path) sample_path = osp.join( 'check_dataset', os.path.relpath(vis_path, output)) sample_paths[tag].append(sample_path) try: label = int(label) except (ValueError, TypeError) as e: raise CheckFailedError( f"Ensure that the second number in each line in {label_file} should be int." ) from e num_classes = max(labels) + 1 attrs = {} attrs['label_file'] = osp.relpath(label_file, output) attrs['num_classes'] = num_classes attrs['train_samples'] = sample_cnts['train'] attrs['train_sample_paths'] = sample_paths['train'] attrs['val_samples'] = sample_cnts['val'] attrs['val_sample_paths'] = sample_paths['val'] return attrs