# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np from pathlib import Path from ...base import BasePredictor from ...base.predictor.transforms import image_common from .keys import ClsKeys as K from .utils import InnerConfig from ....utils import logging from . import transforms as T from ..model_list import MODELS class ClsPredictor(BasePredictor): """ Clssification Predictor """ entities = MODELS def load_other_src(self): """ load the inner config file """ infer_cfg_file_path = os.path.join(self.model_dir, 'inference.yml') if not os.path.exists(infer_cfg_file_path): raise FileNotFoundError( f"Cannot find config file: {infer_cfg_file_path}") return InnerConfig(infer_cfg_file_path) @classmethod def get_input_keys(cls): """ get input keys """ return [[K.IMAGE], [K.IM_PATH]] @classmethod def get_output_keys(cls): """ get output keys """ return [K.CLS_PRED] def _run(self, batch_input): """ run """ input_dict = {} input_dict[K.IMAGE] = np.stack( [data[K.IMAGE] for data in batch_input], axis=0).astype( dtype=np.float32, copy=False) input_ = [input_dict[K.IMAGE]] outputs = self._predictor.predict(input_) cls_outs = outputs[0] # In-place update pred = batch_input for dict_, cls_out in zip(pred, cls_outs): dict_[K.CLS_PRED] = cls_out return pred def _get_pre_transforms_from_config(self): """ get preprocess transforms """ logging.info( f"Transformation operators for data preprocessing will be inferred from config file." ) pre_transforms = self.other_src.pre_transforms pre_transforms.insert(0, image_common.ReadImage(format='RGB')) return pre_transforms def _get_post_transforms_from_config(self): """ get postprocess transforms """ post_transforms = self.other_src.post_transforms post_transforms.extend([ T.PrintResult(), T.SaveClsResults(self.output, self.other_src.labels) ]) return post_transforms