# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import shutil import paddle from pathlib import Path from ..base import BaseTrainer, BaseTrainDeamon from .model_list import MODELS from ...utils.config import AttrDict class ClsTrainer(BaseTrainer): """ Image Classification Model Trainer """ entities = MODELS def dump_label_dict(self, src_label_dict_path: str): """dump label dict config Args: src_label_dict_path (str): path to label dict file to be saved. """ dst_label_dict_path = Path(self.global_config.output).joinpath( "label_dict.txt") shutil.copyfile(src_label_dict_path, dst_label_dict_path) def build_deamon(self, config: AttrDict) -> "ClsTrainDeamon": """build deamon thread for saving training outputs timely Args: config (AttrDict): PaddleX pipeline config, which is loaded from pipeline yaml file. Returns: ClsTrainDeamon: the training deamon thread object for saving training outputs timely. """ return ClsTrainDeamon(config) def update_config(self): """update training config """ if self.train_config.log_interval: self.pdx_config.update_log_interval(self.train_config.log_interval) if self.train_config.eval_interval: self.pdx_config.update_eval_interval( self.train_config.eval_interval) if self.train_config.save_interval: self.pdx_config.update_save_interval( self.train_config.save_interval) self.pdx_config.update_dataset(self.global_config.dataset_dir, "ClsDataset") if self.train_config.num_classes is not None: self.pdx_config.update_num_classes(self.train_config.num_classes) if self.train_config.pretrain_weight_path and self.train_config.pretrain_weight_path != "": self.pdx_config.update_pretrained_weights( self.train_config.pretrain_weight_path) label_dict_path = Path(self.global_config.dataset_dir).joinpath( "label.txt") if label_dict_path.exists(): self.dump_label_dict(label_dict_path) if self.train_config.batch_size is not None: self.pdx_config.update_batch_size(self.train_config.batch_size) if self.train_config.learning_rate is not None: self.pdx_config.update_learning_rate( self.train_config.learning_rate) if self.train_config.epochs_iters is not None: self.pdx_config._update_epochs(self.train_config.epochs_iters) if self.train_config.warmup_steps is not None: self.pdx_config.update_warmup_epochs(self.train_config.warmup_steps) if self.global_config.output is not None: self.pdx_config._update_output_dir(self.global_config.output) def get_train_kwargs(self) -> dict: """get key-value arguments of model training function Returns: dict: the arguments of training function. """ train_args = {"device": self.get_device()} if self.train_config.resume_path is not None and self.train_config.resume_path != "": train_args["resume_path"] = self.train_config.resume_path return train_args class ClsTrainDeamon(BaseTrainDeamon): """ ClsTrainResultDemon """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def get_the_pdparams_suffix(self): """ get the suffix of pdparams file """ return "pdparams" def get_the_pdema_suffix(self): """ get the suffix of pdema file """ return "pdema" def get_the_pdopt_suffix(self): """ get the suffix of pdopt file """ return "pdopt" def get_the_pdstates_suffix(self): """ get the suffix of pdstates file """ return "pdstates" def get_ith_ckp_prefix(self, epoch_id): """ get the prefix of the epoch_id checkpoint file """ return f"epoch_{epoch_id}" def get_best_ckp_prefix(self): """ get the prefix of the best checkpoint file """ return "best_model" def get_score(self, pdstates_path): """ get the score by pdstates file """ if not Path(pdstates_path).exists(): return 0 return paddle.load(pdstates_path)["metric"] def get_epoch_id_by_pdparams_prefix(self, pdparams_prefix): """ get the epoch_id by pdparams file """ return int(pdparams_prefix.split("_")[-1]) def update_label_dict(self, train_output): """ update label dict """ dict_path = train_output.joinpath("label_dict.txt") if not dict_path.exists(): return "" return dict_path