# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import os.path as osp from collections import defaultdict, Counter from pathlib import Path from PIL import Image, ImageOps from pycocotools.coco import COCO from .utils.visualizer import draw_bbox, draw_mask from .....utils.errors import DatasetFileNotFoundError from .....utils.logging import info def check(dataset_dir, output, sample_num=10): """ check dataset """ info(dataset_dir) dataset_dir = osp.abspath(dataset_dir) if not osp.exists(dataset_dir) or not osp.isdir(dataset_dir): raise DatasetFileNotFoundError(file_path=dataset_dir) sample_cnts = dict() sample_paths = defaultdict(list) im_sizes = defaultdict(Counter) tags = ['instance_train', 'instance_val'] for _, tag in enumerate(tags): file_list = osp.join(dataset_dir, f'annotations/{tag}.json') if not osp.exists(file_list): if tag in ('instance_train', 'instance_val'): # train and val file lists must exist raise DatasetFileNotFoundError( file_path=file_list, solution=f"Ensure that both `instance_train.json` and `instance_val.json` exist in \ {dataset_dir}/annotations") else: continue else: with open(file_list, 'r', encoding='utf-8') as f: jsondata = json.load(f) datanno = jsondata['annotations'] sample_cnts[tag] = len(datanno) coco = COCO(file_list) num_class = len(coco.getCatIds()) vis_save_dir = osp.join(output, 'demo_img') image_info = jsondata['images'] for i in range(sample_num): file_name = image_info[i]['file_name'] img_id = image_info[i]['id'] img_path = osp.join(dataset_dir, 'images', file_name) if not osp.exists(img_path): raise DatasetFileNotFoundError(file_path=img_path) img = Image.open(img_path) img = ImageOps.exif_transpose(img) vis_im = draw_bbox(img, coco, img_id) vis_im = draw_mask(vis_im, coco, img_id) vis_path = osp.join(vis_save_dir, file_name) Path(vis_path).parent.mkdir(parents=True, exist_ok=True) vis_im.save(vis_path) sample_path = osp.join('check_dataset', os.path.relpath(vis_path, output)) sample_paths[tag].append(sample_path) attrs = {} attrs['num_classes'] = num_class attrs['train_samples'] = sample_cnts['instance_train'] attrs['train_sample_paths'] = sample_paths['instance_train'] attrs['val_samples'] = sample_cnts['instance_val'] attrs['val_sample_paths'] = sample_paths['instance_val'] return attrs