# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import json import platform from pathlib import Path from collections import defaultdict from PIL import Image import numpy as np import matplotlib.pyplot as plt from matplotlib import font_manager from matplotlib.backends.backend_agg import FigureCanvasAgg from pycocotools.coco import COCO from .....utils.fonts import PINGFANG_FONT_FILE_PATH def deep_analyse(dataset_dir, output): """class analysis for dataset""" tags = ['train', 'val'] all_instances = 0 for tag in tags: annotations_path = os.path.abspath( os.path.join(dataset_dir, f'annotations/instance_{tag}.json')) labels_cnt = defaultdict(list) coco = COCO(annotations_path) cat_ids = coco.getCatIds() for cat_id in cat_ids: cat_name = coco.loadCats(ids=cat_id)[0]["name"] labels_cnt[cat_name] = labels_cnt[cat_name] + coco.getAnnIds( catIds=cat_id) all_instances += len(labels_cnt[cat_name]) if tag == 'train': cnts_train = [ len(cat_ids) for cat_name, cat_ids in labels_cnt.items() ] elif tag == 'val': cnts_val = [ len(cat_ids) for cat_name, cat_ids in labels_cnt.items() ] classes = [cat_name for cat_name, cat_ids in labels_cnt.items()] sorted_id = sorted( range(len(cnts_train)), key=lambda k: cnts_train[k], reverse=True) cnts_train_sorted = sorted(cnts_train, reverse=True) cnts_val_sorted = [cnts_val[index] for index in sorted_id] classes_sorted = [classes[index] for index in sorted_id] x = np.arange(len(classes)) width = 0.5 # bar os_system = platform.system().lower() if os_system == "windows": plt.rcParams['font.sans-serif'] = 'FangSong' else: font = font_manager.FontProperties(fname=PINGFANG_FONT_FILE_PATH) fig, ax = plt.subplots(figsize=(max(8, int(len(classes) / 5)), 5), dpi=120) ax.bar(x, cnts_train_sorted, width=0.5, label='train') ax.bar(x + width, cnts_val_sorted, width=0.5, label='val') plt.xticks( x + width / 2, classes_sorted, rotation=90, fontproperties=None if os_system == "windows" else font) ax.set_ylabel('Counts') plt.legend() fig.tight_layout() fig_path = os.path.join(output, "histogram.png") fig.savefig(fig_path) return {"histogram": os.path.join("check_dataset", "histogram.png")}