# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List import numpy as np import pycocotools.mask as mask_util from fastapi import FastAPI from ...infra import utils as serving_utils from ...infra.config import AppConfig from ...infra.models import ResultResponse from ...schemas.instance_segmentation import INFER_ENDPOINT, InferRequest, InferResult from .._app import create_app, primary_operation def _rle(mask: np.ndarray) -> str: rle_res = mask_util.encode(np.asarray(mask[..., None], order="F", dtype="uint8"))[0] return rle_res["counts"].decode("utf-8") def create_pipeline_app(pipeline: Any, app_config: AppConfig) -> FastAPI: app, ctx = create_app( pipeline=pipeline, app_config=app_config, app_aiohttp_session=True, ) @primary_operation( app, INFER_ENDPOINT, "infer", ) async def _infer(request: InferRequest) -> ResultResponse[InferResult]: pipeline = ctx.pipeline aiohttp_session = ctx.aiohttp_session file_bytes = await serving_utils.get_raw_bytes_async( request.image, aiohttp_session ) image = serving_utils.image_bytes_to_array(file_bytes) result = (await pipeline.infer(image, threshold=request.threshold))[0] instances: List[Dict[str, Any]] = [] for obj, mask in zip(result["boxes"], result["masks"]): rle_res = _rle(mask) mask = dict(rleResult=rle_res, size=mask.shape) instances.append( dict( bbox=obj["coordinate"], categoryId=obj["cls_id"], categoryName=obj["label"], score=obj["score"], mask=mask, ) ) if ctx.config.visualize: output_image_base64 = serving_utils.base64_encode( serving_utils.image_to_bytes(result.img["res"]) ) else: output_image_base64 = None return ResultResponse[InferResult]( logId=serving_utils.generate_log_id(), result=InferResult(instances=instances, image=output_image_base64), ) return app