# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import json import os.path as osp from PIL import Image, ImageOps from collections import defaultdict from .....utils.errors import DatasetFileNotFoundError, CheckFailedError def check(dataset_dir, output, dataset_type="PubTabTableRecDataset", sample_num=10): """ Check whether the dataset is valid. """ if dataset_type == "PubTabTableRecDataset": # Custom dataset if not osp.exists(dataset_dir) or not osp.isdir(dataset_dir): raise DatasetFileNotFoundError(file_path=dataset_dir) tags = ["train", "val"] max_recorded_sample_cnts = 50 sample_cnts = dict() sample_paths = defaultdict(list) for tag in tags: file_list = osp.join(dataset_dir, f"{tag}.txt") if not osp.exists(file_list): if tag in ("train", "val"): # train and val file lists must exist raise DatasetFileNotFoundError( file_path=file_list, solution=f"Ensure that both `train.txt` and `val.txt` exist in {dataset_dir}", ) else: # tag == 'test' continue else: with open(file_list, "r", encoding="utf-8") as f: all_lines = f.readlines() sample_cnts[tag] = len(all_lines) for line in all_lines: info = json.loads(line.strip("\n")) file_name = info["filename"] cells = info["html"]["cells"].copy() structure = info["html"]["structure"]["tokens"].copy() img_path = osp.join(dataset_dir, file_name) if not os.path.exists(img_path): raise DatasetFileNotFoundError(file_path=img_path) vis_save_dir = osp.join(output, "demo_img") if not osp.exists(vis_save_dir): os.makedirs(vis_save_dir) if len(sample_paths[tag]) < sample_num: img = Image.open(img_path) img = ImageOps.exif_transpose(img) vis_path = osp.join(vis_save_dir, osp.basename(file_name)) img.save(vis_path) sample_path = osp.join( "check_dataset", os.path.relpath(vis_path, output) ) sample_paths[tag].append(sample_path) boxes_num = len(cells) tokens_num = sum( [ structure.count(x) for x in ["