# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import os.path as osp from collections import defaultdict from PIL import Image, ImageOps import json import numpy as np from .....utils.errors import DatasetFileNotFoundError def check(dataset_dir, output, sample_num=10): """check dataset""" dataset_dir = osp.abspath(dataset_dir) if not osp.exists(dataset_dir) or not osp.isdir(dataset_dir): raise DatasetFileNotFoundError(file_path=dataset_dir) sample_cnts = dict() sample_paths = defaultdict(list) delim = "\t" valid_num_parts = 2 tags = ["train", "val"] for _, tag in enumerate(tags): file_list = osp.join(dataset_dir, f"{tag}.txt") if not osp.exists(file_list): if tag in ("train", "val"): # train and val file lists must exist raise DatasetFileNotFoundError( file_path=file_list, solution=f"Ensure that both `train.txt` and `val.txt` exist in \ {dataset_dir}", ) else: continue else: with open(file_list, "r", encoding="utf-8") as f: all_lines = f.readlines() sample_cnts[tag] = len(all_lines) for idx, line in enumerate(all_lines): substr = line.strip("\n").split(delim) if len(line.strip("\n")) < 1: continue assert ( len(substr) == valid_num_parts or len(line.strip("\n")) <= 1 ), f"Error in {line}, \ The number of delimiter-separated items in each row in {file_list} \ should be {valid_num_parts} (current delimiter is '{delim}')." file_name = substr[0] label = substr[1] img_path = osp.join(dataset_dir, file_name) if not osp.exists(img_path): raise DatasetFileNotFoundError(file_path=img_path) vis_save_dir = osp.join(output, "demo_img") if not osp.exists(vis_save_dir): os.makedirs(vis_save_dir) if len(sample_paths[tag]) < sample_num: img = Image.open(img_path) img = ImageOps.exif_transpose(img) vis_path = osp.join(vis_save_dir, osp.basename(file_name)) img.save(vis_path) sample_path = osp.join( "check_dataset", os.path.relpath(vis_path, output) ) sample_paths[tag].append(sample_path) # check det label label = json.loads(label) for item in label: assert ( "points" in item and "transcription" in item ), f"line {idx} is not in the correct format." box = np.array(item["points"]) assert ( box.shape[1] == 2 ), f"{box} in line {idx} is not in the correct format." txt = item["transcription"] assert isinstance( txt, str ), f"{txt} in line {idx} is not in the correct format." attrs = {} attrs["train_samples"] = sample_cnts["train"] attrs["train_sample_paths"] = sample_paths["train"][:sample_num] attrs["val_samples"] = sample_cnts["val"] attrs["val_sample_paths"] = sample_paths["val"][:sample_num] return attrs