// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "include/paddlex/transforms.h" namespace PaddleX { std::map interpolations = {{"LINEAR", cv::INTER_LINEAR}, {"NEAREST", cv::INTER_NEAREST}, {"AREA", cv::INTER_AREA}, {"CUBIC", cv::INTER_CUBIC}, {"LANCZOS4", cv::INTER_LANCZOS4}}; bool Normalize::Run(cv::Mat* im){ for (int h = 0; h < im->rows; h++) { for (int w = 0; w < im->cols; w++) { im->at(h, w)[0] = (im->at(h, w)[0] / 255.0 - mean_[0]) / std_[0]; im->at(h, w)[1] = (im->at(h, w)[1] / 255.0 - mean_[1]) / std_[1]; im->at(h, w)[2] = (im->at(h, w)[2] / 255.0 - mean_[2]) / std_[2]; } } return true; } bool CenterCrop::Run(cv::Mat* im) { int height = static_cast(im->rows); int width = static_cast(im->cols); if (height < height_ || width < width_) { std::cerr << "[CenterCrop] Image size less than crop size" << std::endl; return false; } int offset_x = static_cast((width - width_) / 2); int offset_y = static_cast((height - height_) / 2); cv::Rect crop_roi(offset_x, offset_y, width_, height_); *im = (*im)(crop_roi); return true; } float ResizeByShort::GenerateScale(const cv::Mat& im) { int origin_w = im.cols; int origin_h = im.rows; int im_size_max = std::max(origin_w, origin_h); int im_size_min = std::min(origin_w, origin_h); float scale = static_cast(short_size_) / static_cast(im_size_min); if (max_size_ > 0) { if (round(scale * im_size_max) > max_size_) { scale = static_cast(max_size_) / static_cast(im_size_max); } } return scale; } bool ResizeByShort::Run(cv::Mat* im) { float scale = GenerateScale(*im); int width = static_cast(scale * im->cols); int height = static_cast(scale * im->rows); cv::resize(*im, *im, cv::Size(width, height), 0, 0, cv::INTER_LINEAR); return true; } void Transforms::Init(const YAML::Node& transforms_node, bool to_rgb) { transforms_.clear(); to_rgb_ = to_rgb; for (const auto& item : transforms_node) { std::string name = item.begin()->first.as(); std::cout << "trans name: " << name << std::endl; std::shared_ptr transform = CreateTransform(name); transform->Init(item.begin()->second); transforms_.push_back(transform); } } std::shared_ptr Transforms::CreateTransform( const std::string& transform_name) { if (transform_name == "Normalize") { return std::make_shared(); } else if (transform_name == "CenterCrop") { return std::make_shared(); } else if (transform_name == "ResizeByShort") { return std::make_shared(); } else { std::cerr << "There's unexpected transform(name='" << transform_name << "')." << std::endl; exit(-1); } } bool Transforms::Run(cv::Mat* im, Blob::Ptr blob) { // 按照transforms中预处理算子顺序处理图像 if (to_rgb_) { cv::cvtColor(*im, *im, cv::COLOR_BGR2RGB); } (*im).convertTo(*im, CV_32FC3); for (int i = 0; i < transforms_.size(); ++i) { if (!transforms_[i]->Run(im)) { std::cerr << "Apply transforms to image failed!" << std::endl; return false; } } // 将图像由NHWC转为NCHW格式 // 同时转为连续的内存块存储到Blob SizeVector blobSize = blob->getTensorDesc().getDims(); const size_t width = blobSize[3]; const size_t height = blobSize[2]; const size_t channels = blobSize[1]; MemoryBlob::Ptr mblob = InferenceEngine::as(blob); auto mblobHolder = mblob->wmap(); float *blob_data = mblobHolder.as(); for (size_t c = 0; c < channels; c++) { for (size_t h = 0; h < height; h++) { for (size_t w = 0; w < width; w++) { blob_data[c * width * height + h * width + w] = im->at(h, w)[c]; } } } return true; } } // namespace PaddleX