# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from ....utils import logging from ...base.utils.arg import CLIArgument from ...base.utils.subprocess import CompletedProcess from ....utils.misc import abspath from ..text_rec.model import TextRecModel class TableRecModel(TextRecModel): """ Table Recognition Model """ METRICS = ['acc'] def predict(self, weight_path: str, input_path: str, device: str='gpu', save_dir: str=None, **kwargs) -> CompletedProcess: """predict using specified weight Args: weight_path (str): the path of model weight file used to predict. input_path (str): the path of image file to be predicted. device (str, optional): the running device. Defaults to 'gpu'. save_dir (str, optional): the directory path to save predict output. Defaults to None. Returns: CompletedProcess: the result of predicting subprocess execution. """ config = self.config.copy() weight_path = abspath(weight_path) config.update_pretrained_weights(weight_path) input_path = abspath(input_path) config._update_infer_img(input_path) # TODO: Handle `device` logging.warning("`device` will not be used.") if save_dir is not None: save_dir = abspath(save_dir) else: save_dir = abspath(config.get_predict_save_dir()) config._update_save_res_path(save_dir) self._assert_empty_kwargs(kwargs) with self._create_new_config_file() as config_path: config.dump(config_path) return self.runner.predict(config_path, [], device) def infer(self, model_dir: str, input_path: str, device: str='gpu', save_dir: str=None, **kwargs) -> CompletedProcess: """predict image using infernece model Args: model_dir (str): the directory path of inference model files that would use to predict. input_path (str): the path of image that would be predict. device (str, optional): the running device. Defaults to 'gpu'. save_dir (str, optional): the directory path to save output. Defaults to None. Returns: CompletedProcess: the result of infering subprocess execution. """ config = self.config.copy() cli_args = [] model_dir = abspath(model_dir) cli_args.append(CLIArgument('--table_model_dir', model_dir)) input_path = abspath(input_path) cli_args.append(CLIArgument('--image_dir', input_path)) device_type, _ = self.runner.parse_device(device) cli_args.append(CLIArgument('--use_gpu', str(device_type == 'gpu'))) if save_dir is not None: save_dir = abspath(save_dir) else: # `save_dir` is None save_dir = abspath(os.path.join('output', 'infer')) cli_args.append(CLIArgument('--output', save_dir)) dict_path = kwargs.pop('dict_path', None) if dict_path is not None: dict_path = abspath(dict_path) else: dict_path = config.get_label_dict_path() cli_args.append(CLIArgument('--table_char_dict_path', dict_path)) model_type = config._get_model_type() cli_args.append(CLIArgument('--table_algorithm', model_type)) infer_shape = config._get_infer_shape() if infer_shape is not None: cli_args.append(CLIArgument('--table_max_len', infer_shape)) self._assert_empty_kwargs(kwargs) with self._create_new_config_file() as config_path: config.dump(config_path) return self.runner.infer(config_path, cli_args, device)