// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include "model_deploy/common/include/paddle_deploy.h" DEFINE_string(model_filename, "", "Path of det inference model"); DEFINE_string(params_filename, "", "Path of det inference params"); DEFINE_string(cfg_file, "", "Path of yaml file"); DEFINE_string(model_type, "", "model type"); DEFINE_string(image_list, "", "Path of test image file"); DEFINE_int32(batch_size, 1, "Batch size of infering"); DEFINE_bool(use_gpu, false, "Infering with GPU or CPU"); DEFINE_int32(gpu_id, 0, "GPU card id"); DEFINE_bool(use_trt, false, "Infering with TensorRT"); int main(int argc, char** argv) { // Parsing command-line google::ParseCommandLineFlags(&argc, &argv, true); // create model PaddleDeploy::Model* model = PaddleDeploy::CreateModel(FLAGS_model_type); // model init model->Init(FLAGS_cfg_file); // inference engine init PaddleDeploy::PaddleEngineConfig engine_config; engine_config.model_filename = FLAGS_model_filename; engine_config.params_filename = FLAGS_params_filename; engine_config.use_gpu = FLAGS_use_gpu; engine_config.gpu_id = FLAGS_gpu_id; engine_config.use_trt = FLAGS_use_trt; if (FLAGS_use_trt) { engine_config.precision = 0; } model->PaddleEngineInit(engine_config); // Mini-batch std::vector image_paths; if (FLAGS_image_list != "") { std::ifstream inf(FLAGS_image_list); if (!inf) { std::cerr << "Fail to open file " << FLAGS_image_list << std::endl; return -1; } std::string image_path; while (getline(inf, image_path)) { image_paths.push_back(image_path); } } // infer std::vector results; for (int i = 0; i < image_paths.size(); i += FLAGS_batch_size) { // Read image int im_vec_size = std::min(static_cast(image_paths.size()), i + FLAGS_batch_size); std::vector im_vec(im_vec_size - i); #pragma omp parallel for num_threads(im_vec_size - i) for (int j = i; j < im_vec_size; ++j) { im_vec[j - i] = std::move(cv::imread(image_paths[j], 1)); } model->Predict(im_vec, &results); std::cout << i / FLAGS_batch_size << " group -----" << std::endl; for (auto j = 0; j < results.size(); ++j) { std::cout << "Result for sample " << j << std::endl; std::cout << results[j] << std::endl; } } delete model; return 0; }