# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle class ExponentialMovingAverage(object): def __init__(self, decay, model, use_thres_step=False): self.step = 0 self.decay = decay self.shadow = dict() for k, v in model.state_dict().items(): self.shadow[k] = paddle.zeros_like(v) self.use_thres_step = use_thres_step def update(self, model): if self.use_thres_step: decay = min(self.decay, (1 + self.step) / (10 + self.step)) else: decay = self.decay self._decay = decay model_dict = model.state_dict() for k, v in self.shadow.items(): v = decay * v + (1 - decay) * model_dict[k] v.stop_gradient = True self.shadow[k] = v self.step += 1 def apply(self): if self.step == 0: return self.shadow state_dict = dict() for k, v in self.shadow.items(): v = v / (1 - self._decay**self.step) v.stop_gradient = True state_dict[k] = v return state_dict