# copytrue (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import os.path as osp def prune(best_model_path, dataset_path, sensitivities_path, batch_size): import paddlex as pdx model = pdx.load_model(best_model_path) # build coco dataset if osp.exists(osp.join(dataset_path, 'JPEGImages')) and \ osp.exists(osp.join(dataset_path, 'train.json')) and \ osp.exists(osp.join(dataset_path, 'val.json')): data_dir = osp.join(dataset_path, 'JPEGImages') eval_ann_file = osp.join(dataset_path, 'val.json') eval_dataset = pdx.datasets.CocoDetection( data_dir=data_dir, ann_file=eval_ann_file, transforms=model.eval_transforms) # build voc elif osp.exists(osp.join(dataset_path, 'train_list.txt')) and \ osp.exists(osp.join(dataset_path, 'val_list.txt')) and \ osp.exists(osp.join(dataset_path, 'labels.txt')): eval_file_list = osp.join(dataset_path, 'val_list.txt') label_list = osp.join(dataset_path, 'labels.txt') eval_dataset = pdx.datasets.VOCDetection( data_dir=dataset_path, file_list=eval_file_list, label_list=label_list, transforms=model.eval_transforms) pdx.slim.cal_params_sensitivities(model, sensitivities_path, eval_dataset, batch_size)