# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np from ....utils import logging from ...base.predictor.transforms import ts_common from ...base import BasePredictor from .keys import TSFCKeys as K from . import transforms as T from .utils import InnerConfig from ..model_list import MODELS class TSCLSPredictor(BasePredictor): """SegPredictor""" entities = MODELS def __init__( self, model_name, model_dir, kernel_option, output, pre_transforms=None, post_transforms=None, ): super().__init__( model_name=model_name, model_dir=model_dir, kernel_option=kernel_option, output=output, pre_transforms=pre_transforms, post_transforms=post_transforms, ) def load_other_src(self): """load the inner config file""" infer_cfg_file_path = os.path.join(self.model_dir, "inference.yml") if not os.path.exists(infer_cfg_file_path): raise FileNotFoundError(f"Cannot find config file: {infer_cfg_file_path}") return InnerConfig(infer_cfg_file_path, self.model_dir) @classmethod def get_input_keys(cls): """get input keys""" return [[K.TS], [K.TS_PATH]] @classmethod def get_output_keys(cls): """get output keys""" return [K.PRED] def _run(self, batch_input): """run""" n = len(batch_input[0][K.TS]) input_ = [ np.stack([lst[i] for lst in [data[K.TS] for data in batch_input]], axis=0) for i in range(n) ] outputs = self._predictor.predict(input_) batch_output = outputs[0] # In-place update for dict_, output in zip(batch_input, batch_output): dict_[K.PRED] = output return batch_input def _get_pre_transforms_from_config(self): """_get_pre_transforms_from_config""" # If `K.TS` (the decoded image) is found, return a default list of # transformation operators for the input (if possible). # If `K.TS` (the decoded image) is not found, `K.IM_PATH` (the image # path) must be contained in the input. In this case, we infer # transformation operators from the config file. # In cases where the input contains both `K.TS` and `K.IM_PATH`, # `K.TS` takes precedence over `K.IM_PATH`. logging.info( f"Transformation operators for data preprocessing will be inferred from config file." ) pre_transforms = self.other_src.pre_transforms pre_transforms.insert(0, ts_common.ReadTS()) return pre_transforms def _get_post_transforms_from_config(self): return [T.SaveTSClsResults(self.output)]