// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "ultra_infer/ultra_infer_model.h" #include "ultra_infer/utils/unique_ptr.h" #include "ultra_infer/vision/common/processors/transform.h" #include "ultra_infer/vision/common/result.h" #include "ultra_infer/vision/ocr/ppocr/cls_postprocessor.h" #include "ultra_infer/vision/ocr/ppocr/cls_preprocessor.h" #include "ultra_infer/vision/ocr/ppocr/utils/ocr_postprocess_op.h" namespace ultra_infer { namespace vision { /** \brief All OCR series model APIs are defined inside this namespace * */ namespace ocr { /*! @brief Classifier object is used to load the classification model provided * by PaddleOCR. */ class ULTRAINFER_DECL Classifier : public UltraInferModel { public: Classifier(); /** \brief Set path of model file, and the configuration of runtime * * \param[in] model_file Path of model file, e.g * ./ch_ppocr_mobile_v2.0_cls_infer/model.pdmodel. \param[in] params_file Path * of parameter file, e.g ./ch_ppocr_mobile_v2.0_cls_infer/model.pdiparams, if * the model format is ONNX, this parameter will be ignored. \param[in] * custom_option RuntimeOption for inference, the default will use cpu, and * choose the backend defined in `valid_cpu_backends`. \param[in] model_format * Model format of the loaded model, default is Paddle format. */ Classifier(const std::string &model_file, const std::string ¶ms_file = "", const RuntimeOption &custom_option = RuntimeOption(), const ModelFormat &model_format = ModelFormat::PADDLE); /** \brief Clone a new Classifier with less memory usage when multiple * instances of the same model are created * * \return new Classifier* type unique pointer */ virtual std::unique_ptr Clone() const; /// Get model's name std::string ModelName() const { return "ppocr/ocr_cls"; } /** \brief Predict the input image and get OCR classification model * cls_result. * * \param[in] img The input image data, comes from cv::imread(), is a 3-D * array with layout HWC, BGR format. \param[in] cls_label The label result of * cls model will be written in to this param. \param[in] cls_score The score * result of cls model will be written in to this param. \return true if the * prediction is succeeded, otherwise false. */ virtual bool Predict(const cv::Mat &img, int32_t *cls_label, float *cls_score); /** \brief Predict the input image and get OCR recognition model result. * * \param[in] img The input image data, comes from cv::imread(), is a 3-D * array with layout HWC, BGR format. \param[in] ocr_result The output of OCR * recognition model result will be written to this structure. \return true if * the prediction is succeeded, otherwise false. */ virtual bool Predict(const cv::Mat &img, vision::OCRResult *ocr_result); /** \brief BatchPredict the input image and get OCR classification model * result. * * \param[in] img The input image data, comes from cv::imread(), is a 3-D * array with layout HWC, BGR format. \param[in] ocr_result The output of OCR * classification model result will be written to this structure. \return true * if the prediction is succeeded, otherwise false. */ virtual bool BatchPredict(const std::vector &images, vision::OCRResult *ocr_result); /** \brief BatchPredict the input image and get OCR classification model * cls_result. * * \param[in] images The list of input image data, comes from cv::imread(), is * a 3-D array with layout HWC, BGR format. \param[in] cls_labels The label * results of cls model will be written in to this vector. \param[in] * cls_scores The score results of cls model will be written in to this * vector. \return true if the prediction is succeeded, otherwise false. */ virtual bool BatchPredict(const std::vector &images, std::vector *cls_labels, std::vector *cls_scores); virtual bool BatchPredict(const std::vector &images, std::vector *cls_labels, std::vector *cls_scores, size_t start_index, size_t end_index); /// Get preprocessor reference of ClassifierPreprocessor virtual ClassifierPreprocessor &GetPreprocessor() { return preprocessor_; } /// Get postprocessor reference of ClassifierPostprocessor virtual ClassifierPostprocessor &GetPostprocessor() { return postprocessor_; } private: bool Initialize(); ClassifierPreprocessor preprocessor_; ClassifierPostprocessor postprocessor_; }; } // namespace ocr } // namespace vision } // namespace ultra_infer