// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "model_deploy/common/include/paddle_deploy.h" DEFINE_string(model_filename, "", "Path of det inference model"); DEFINE_string(params_filename, "", "Path of det inference params"); DEFINE_string(cfg_file, "", "Path of yaml file"); DEFINE_string(model_type, "", "model type"); DEFINE_string(image, "", "Path of test image file"); DEFINE_int32(gpu_id, 0, "GPU card id"); int main(int argc, char** argv) { // Parsing command-line google::ParseCommandLineFlags(&argc, &argv, true); // create model std::shared_ptr model = PaddleDeploy::CreateModel(FLAGS_model_type); // model init model->Init(FLAGS_cfg_file); // inference engine init PaddleDeploy::PaddleEngineConfig engine_config; engine_config.model_filename = FLAGS_model_filename; engine_config.params_filename = FLAGS_params_filename; engine_config.gpu_id = FLAGS_gpu_id; engine_config.use_gpu = true; engine_config.use_trt = true; engine_config.precision = 0; engine_config.min_subgraph_size = 10; engine_config.max_workspace_size = 1 << 30; if ("clas" == FLAGS_model_type) { // Adjust shape according to the actual model engine_config.min_input_shape["inputs"] = {1, 3, 224, 224}; engine_config.max_input_shape["inputs"] = {1, 3, 224, 224}; engine_config.optim_input_shape["inputs"] = {1, 3, 224, 224}; } else if ("det" == FLAGS_model_type) { // Adjust shape according to the actual model engine_config.min_input_shape["image"] = {1, 3, 608, 608}; engine_config.max_input_shape["image"] = {1, 3, 608, 608}; engine_config.optim_input_shape["image"] = {1, 3, 608, 608}; } else if ("seg" == FLAGS_model_type) { engine_config.min_input_shape["x"] = {1, 3, 100, 100}; engine_config.max_input_shape["x"] = {1, 3, 2000, 2000}; engine_config.optim_input_shape["x"] = {1, 3, 1024, 1024}; // Additional nodes need to be added, pay attention to the output prompt } model->PaddleEngineInit(engine_config); // prepare data std::vector imgs; imgs.push_back(std::move(cv::imread(FLAGS_image))); // predict std::vector results; model->Predict(imgs, &results, 1); std::cout << results[0] << std::endl; return 0; }