import os # 选择使用0号卡 os.environ['CUDA_VISIBLE_DEVICES'] = '0' import paddlex as pdx from paddlex.seg import transforms # 下载和解压人像分割数据集 human_seg_data = 'https://paddlex.bj.bcebos.com/humanseg/data/human_seg_data.zip' pdx.utils.download_and_decompress(human_seg_data, path='./') # 下载和解压人像分割预训练模型 pretrain_weights = 'https://paddleseg.bj.bcebos.com/humanseg/models/humanseg_mobile_ckpt.zip' pdx.utils.download_and_decompress( pretrain_weights, path='./output/human_seg/pretrain') # 定义训练和验证时的transforms train_transforms = transforms.Compose([ transforms.Resize([192, 192]), transforms.RandomHorizontalFlip(), transforms.Normalize() ]) eval_transforms = transforms.Compose( [transforms.Resize([192, 192]), transforms.Normalize()]) # 定义训练和验证所用的数据集 # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/datasets/semantic_segmentation.html#segdataset train_dataset = pdx.datasets.SegDataset( data_dir='human_seg_data', file_list='human_seg_data/train_list.txt', label_list='human_seg_data/labels.txt', transforms=train_transforms, shuffle=True) eval_dataset = pdx.datasets.SegDataset( data_dir='human_seg_data', file_list='human_seg_data/val_list.txt', label_list='human_seg_data/labels.txt', transforms=eval_transforms) # 初始化模型,并进行训练 # 可使用VisualDL查看训练指标 # VisualDL启动方式: visualdl --logdir output/unet/vdl_log --port 8001 # 浏览器打开 https://0.0.0.0:8001即可 # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP # https://paddlex.readthedocs.io/zh_CN/latest/apis/models/semantic_segmentation.html#hrnet num_classes = len(train_dataset.labels) model = pdx.seg.HRNet(num_classes=num_classes, width='18_small_v1') model.train( num_epochs=10, train_dataset=train_dataset, train_batch_size=8, eval_dataset=eval_dataset, learning_rate=0.001, pretrain_weights='./output/human_seg/pretrain/humanseg_mobile_ckpt', save_dir='output/human_seg', use_vdl=True)