# 环境变量配置,用于控制是否使用GPU # 说明文档:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html#gpu import os os.environ['CUDA_VISIBLE_DEVICES'] = '2' import paddlex as pdx from paddlex.seg import transforms # 定义训练和验证时的transforms # API说明 https://paddlex.readthedocs.io/zh_CN/develop/apis/transforms/seg_transforms.html train_transforms = transforms.Compose([ #transforms.ResizeStepScaling( # min_scale_factor=0.5, # max_scale_factor=2., # scale_step_size=0.25), transforms.RandomPaddingCrop( crop_size=769, im_padding_value=[127.5] * 6), #transforms.ResizeByLong(long_size=512), #transforms.Padding( # target_size=512, im_padding_value=[127.5] * 6), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.Normalize( mean=[0.5] * 6, std=[0.5] * 6, min_val=[0] * 6, max_val=[255] * 6) ]) eval_transforms = transforms.Compose([ transforms.Padding( target_size=1000, im_padding_value=[127.5] * 6), transforms.Normalize( mean=[0.5] * 6, std=[0.5] * 6, min_val=[0] * 6, max_val=[255] * 6) ]) # 定义训练和验证所用的数据集 # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/datasets.html#paddlex-datasets-segdataset train_dataset = pdx.datasets.ChangeDetDataset( data_dir='dataset', file_list='dataset/train_list.txt', label_list='dataset/labels.txt', transforms=train_transforms, num_workers=4, shuffle=True) eval_dataset = pdx.datasets.ChangeDetDataset( data_dir='dataset', file_list='dataset/val_list.txt', label_list='dataset/labels.txt', num_workers=4, transforms=eval_transforms) # 初始化模型,并进行训练 # 可使用VisualDL查看训练指标,参考https://paddlex.readthedocs.io/zh_CN/develop/train/visualdl.html num_classes = len(train_dataset.labels) # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/semantic_segmentation.html#paddlex-seg-deeplabv3p model = pdx.seg.UNet( num_classes=num_classes, input_channel=6, use_bce_loss=True, use_dice_loss=True) # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/semantic_segmentation.html#train # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html model.train( num_epochs=400, train_dataset=train_dataset, train_batch_size=4, eval_dataset=eval_dataset, learning_rate=0.01, save_interval_epochs=10, pretrain_weights='CITYSCAPES', save_dir='output/unet_3', use_vdl=True)