# 环境变量配置,用于控制是否使用GPU # 说明文档:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html#gpu import os os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3' import json from paddlex.det import transforms import paddlex as pdx # API说明 https://paddlex.readthedocs.io/zh_CN/develop/apis/transforms/det_transforms.html train_transforms = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.Normalize(), transforms.ResizeByShort( short_size=800, max_size=1333), transforms.Padding(coarsest_stride=32) ]) eval_transforms = transforms.Compose([ transforms.Normalize(), transforms.ResizeByShort( short_size=800, max_size=1333), transforms.Padding(coarsest_stride=32), ]) # 定义训练和验证所用的数据集 # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/datasets.html#paddlex-datasets-vocdetection #train_dataset = pdx.datasets.VOCDetection( # data_dir='dataset', # file_list='dataset/train_list.txt', # label_list='dataset/labels.txt', # transforms=train_transforms, # num_workers=2, # shuffle=True) eval_dataset = pdx.datasets.VOCDetection( data_dir='dataset', file_list='dataset/val_list.txt', label_list='dataset/labels.txt', num_workers=2, transforms=eval_transforms) # 初始化模型,并进行训练 # 可使用VisualDL查看训练指标,参考https://paddlex.readthedocs.io/zh_CN/develop/train/visualdl.html # num_classes 需要设置为包含背景类的类别数,即: 目标类别数量 + 1 #num_classes = len(train_dataset.labels) + 1 # ## API说明: https://paddlex.readthedocs.io/zh_CN/develop/apis/models/detection.html#paddlex-det-fasterrcnn #model = pdx.det.FasterRCNN(num_classes=num_classes, backbone='ResNet50_vd') # ## API说明: https://paddlex.readthedocs.io/zh_CN/develop/apis/models/detection.html#id1 ## 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html #model.train( # num_epochs=36, # train_dataset=train_dataset, # train_batch_size=8, # eval_dataset=eval_dataset, # learning_rate=0.01, # lr_decay_epochs=[24, 33], # warmup_steps=1000, # pretrain_weights='ResNet50_vd_ssld_pretrained', # save_dir='output/guan_2', # use_vdl=False) #eval_dataset = pdx.datasets.CocoDetection( # data_dir='dataset_coco/JPEGImages', # ann_file='dataset_coco/val.json', # num_workers=2, # transforms=eval_transforms) #model = pdx.load_model('output/guan_4/best_model/') #eval_details = model.evaluate(eval_dataset, batch_size=8, return_details=True) class MyEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.integer): return int(obj) elif isinstance(obj, np.floating): return float(obj) elif isinstance(obj, np.ndarray): return obj.tolist() else: return super(MyEncoder, self).default(obj) with open('output/guan_4/best_model/eval_details.json', 'r') as f: eval_details = json.load(f) json_path = 'output/guan_4/best_model/gt.json' json.dump(eval_details['gt'], open(json_path, "w"), indent=4, cls=MyEncoder) json_path = 'output/guan_4/best_model/bbox.json' json.dump(eval_details['bbox'], open(json_path, "w"), indent=4, cls=MyEncoder)