# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional from fastapi import FastAPI, HTTPException from pydantic import BaseModel, Field from typing_extensions import Annotated, TypeAlias from .....utils import logging from ...formula_recognition import FormulaRecognitionPipeline from .. import utils as serving_utils from ..app import AppConfig, create_app from ..models import Response, ResultResponse class InferenceParams(BaseModel): maxLongSide: Optional[Annotated[int, Field(gt=0)]] = None class InferRequest(BaseModel): image: str inferenceParams: Optional[InferenceParams] = None Point: TypeAlias = Annotated[List[float], Field(min_length=2, max_length=2)] Polygon: TypeAlias = Annotated[List[Point], Field(min_length=3)] class Formula(BaseModel): poly: Polygon latex: str class InferResult(BaseModel): formulas: List[Formula] image: str def create_pipeline_app( pipeline: FormulaRecognitionPipeline, app_config: AppConfig ) -> FastAPI: app, ctx = create_app( pipeline=pipeline, app_config=app_config, app_aiohttp_session=True ) @app.post( "/formula-recognition", operation_id="infer", responses={422: {"model": Response}}, ) async def _infer(request: InferRequest) -> ResultResponse[InferResult]: pipeline = ctx.pipeline aiohttp_session = ctx.aiohttp_session if request.inferenceParams: max_long_side = request.inferenceParams.maxLongSide if max_long_side: raise HTTPException( status_code=422, detail="`max_long_side` is currently not supported.", ) try: file_bytes = await serving_utils.get_raw_bytes( request.image, aiohttp_session ) image = serving_utils.image_bytes_to_array(file_bytes) result = (await pipeline.infer(image))[0] formulas: List[Formula] = [] for poly, latex in zip(result["dt_polys"], result["rec_formula"]): formulas.append( Formula( poly=poly, latex=latex, ) ) output_image_base64 = serving_utils.image_to_base64(result.img) return ResultResponse( logId=serving_utils.generate_log_id(), errorCode=0, errorMsg="Success", result=InferResult( formulas=formulas, image=output_image_base64, ), ) except Exception as e: logging.exception(e) raise HTTPException(status_code=500, detail="Internal server error") return app