# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import copy from pathlib import Path from typing import Dict import cv2 import re import numpy as np from PIL import Image from PIL import ImageDraw from ...common.result import ( BaseCVResult, HtmlMixin, JsonMixin, MarkdownMixin, StrMixin, XlsxMixin, ) from .utils import get_layout_ordering from .utils import recursive_img_array2path from .utils import get_show_color class LayoutParsingResultV2(BaseCVResult, HtmlMixin, XlsxMixin, MarkdownMixin): """Layout Parsing Result V2""" def __init__(self, data) -> None: """Initializes a new instance of the class with the specified data.""" super().__init__(data) HtmlMixin.__init__(self) XlsxMixin.__init__(self) MarkdownMixin.__init__(self) JsonMixin.__init__(self) self.already_sorted = False def _to_img(self) -> dict[str, np.ndarray]: res_img_dict = {} model_settings = self["model_settings"] if model_settings["use_doc_preprocessor"]: res_img_dict.update(**self["doc_preprocessor_res"].img) res_img_dict["layout_det_res"] = self["layout_det_res"].img["res"] if model_settings["use_general_ocr"] or model_settings["use_table_recognition"]: res_img_dict["overall_ocr_res"] = self["overall_ocr_res"].img["ocr_res_img"] if model_settings["use_general_ocr"]: general_ocr_res = copy.deepcopy(self["overall_ocr_res"]) general_ocr_res["rec_polys"] = self["text_paragraphs_ocr_res"]["rec_polys"] general_ocr_res["rec_texts"] = self["text_paragraphs_ocr_res"]["rec_texts"] general_ocr_res["rec_scores"] = self["text_paragraphs_ocr_res"][ "rec_scores" ] general_ocr_res["rec_boxes"] = self["text_paragraphs_ocr_res"]["rec_boxes"] res_img_dict["text_paragraphs_ocr_res"] = general_ocr_res.img["ocr_res_img"] if model_settings["use_table_recognition"] and len(self["table_res_list"]) > 0: table_cell_img = copy.deepcopy( self["doc_preprocessor_res"]["output_img"], ) for sno in range(len(self["table_res_list"])): table_res = self["table_res_list"][sno] cell_box_list = table_res["cell_box_list"] for box in cell_box_list: x1, y1, x2, y2 = (int(pos) for pos in box) cv2.rectangle( table_cell_img, (x1, y1), (x2, y2), (255, 0, 0), 2, ) res_img_dict["table_cell_img"] = table_cell_img if model_settings["use_seal_recognition"] and len(self["seal_res_list"]) > 0: for sno in range(len(self["seal_res_list"])): seal_res = self["seal_res_list"][sno] seal_region_id = seal_res["seal_region_id"] sub_seal_res_dict = seal_res.img key = f"seal_res_region{seal_region_id}" res_img_dict[key] = sub_seal_res_dict["ocr_res_img"] if ( model_settings["use_formula_recognition"] and len(self["formula_res_list"]) > 0 ): for sno in range(len(self["formula_res_list"])): formula_res = self["formula_res_list"][sno] formula_region_id = formula_res["formula_region_id"] sub_formula_res_dict = formula_res.img key = f"formula_res_region{formula_region_id}" res_img_dict[key] = sub_formula_res_dict["res"] return res_img_dict def _to_str(self, *args, **kwargs) -> dict[str, str]: """Converts the instance's attributes to a dictionary and then to a string. Args: *args: Additional positional arguments passed to the base class method. **kwargs: Additional keyword arguments passed to the base class method. Returns: Dict[str, str]: A dictionary with the instance's attributes converted to strings. """ data = {} data["input_path"] = self["input_path"] model_settings = self["model_settings"] data["model_settings"] = model_settings if self["model_settings"]["use_doc_preprocessor"]: data["doc_preprocessor_res"] = self["doc_preprocessor_res"].str["res"] data["layout_det_res"] = self["layout_det_res"].str["res"] if model_settings["use_general_ocr"] or model_settings["use_table_recognition"]: data["overall_ocr_res"] = self["overall_ocr_res"].str["res"] if model_settings["use_general_ocr"]: general_ocr_res = {} general_ocr_res["rec_polys"] = self["text_paragraphs_ocr_res"]["rec_polys"] general_ocr_res["rec_texts"] = self["text_paragraphs_ocr_res"]["rec_texts"] general_ocr_res["rec_scores"] = self["text_paragraphs_ocr_res"][ "rec_scores" ] general_ocr_res["rec_boxes"] = self["text_paragraphs_ocr_res"]["rec_boxes"] data["text_paragraphs_ocr_res"] = general_ocr_res if model_settings["use_table_recognition"] and len(self["table_res_list"]) > 0: data["table_res_list"] = [] for sno in range(len(self["table_res_list"])): table_res = self["table_res_list"][sno] data["table_res_list"].append(table_res.str["res"]) if model_settings["use_seal_recognition"] and len(self["seal_res_list"]) > 0: data["seal_res_list"] = [] for sno in range(len(self["seal_res_list"])): seal_res = self["seal_res_list"][sno] data["seal_res_list"].append(seal_res.str["res"]) if ( model_settings["use_formula_recognition"] and len(self["formula_res_list"]) > 0 ): data["formula_res_list"] = [] for sno in range(len(self["formula_res_list"])): formula_res = self["formula_res_list"][sno] data["formula_res_list"].append(formula_res.str["res"]) return StrMixin._to_str(data, *args, **kwargs) def _to_json(self, *args, **kwargs) -> dict[str, str]: """ Converts the object's data to a JSON dictionary. Args: *args: Positional arguments passed to the JsonMixin._to_json method. **kwargs: Keyword arguments passed to the JsonMixin._to_json method. Returns: Dict[str, str]: A dictionary containing the object's data in JSON format. """ data = {} data["input_path"] = self["input_path"] model_settings = self["model_settings"] data["model_settings"] = model_settings if self["model_settings"]["use_doc_preprocessor"]: data["doc_preprocessor_res"] = self["doc_preprocessor_res"].json["res"] data["layout_det_res"] = self["layout_det_res"].json["res"] if model_settings["use_general_ocr"] or model_settings["use_table_recognition"]: data["overall_ocr_res"] = self["overall_ocr_res"].json["res"] if model_settings["use_general_ocr"]: general_ocr_res = {} general_ocr_res["rec_polys"] = self["text_paragraphs_ocr_res"]["rec_polys"] general_ocr_res["rec_texts"] = self["text_paragraphs_ocr_res"]["rec_texts"] general_ocr_res["rec_scores"] = self["text_paragraphs_ocr_res"][ "rec_scores" ] general_ocr_res["rec_boxes"] = self["text_paragraphs_ocr_res"]["rec_boxes"] data["text_paragraphs_ocr_res"] = general_ocr_res if model_settings["use_table_recognition"] and len(self["table_res_list"]) > 0: data["table_res_list"] = [] for sno in range(len(self["table_res_list"])): table_res = self["table_res_list"][sno] data["table_res_list"].append(table_res.json["res"]) if model_settings["use_seal_recognition"] and len(self["seal_res_list"]) > 0: data["seal_res_list"] = [] for sno in range(len(self["seal_res_list"])): seal_res = self["seal_res_list"][sno] data["seal_res_list"].append(seal_res.json["res"]) if ( model_settings["use_formula_recognition"] and len(self["formula_res_list"]) > 0 ): data["formula_res_list"] = [] for sno in range(len(self["formula_res_list"])): formula_res = self["formula_res_list"][sno] data["formula_res_list"].append(formula_res.json["res"]) return JsonMixin._to_json(data, *args, **kwargs) def _to_html(self) -> dict[str, str]: """Converts the prediction to its corresponding HTML representation. Returns: Dict[str, str]: The str type HTML representation result. """ model_settings = self["model_settings"] res_html_dict = {} if model_settings["use_table_recognition"] and len(self["table_res_list"]) > 0: for sno in range(len(self["table_res_list"])): table_res = self["table_res_list"][sno] table_region_id = table_res["table_region_id"] key = f"table_{table_region_id}" res_html_dict[key] = table_res.html["pred"] return res_html_dict def _to_xlsx(self) -> dict[str, str]: """Converts the prediction HTML to an XLSX file path. Returns: Dict[str, str]: The str type XLSX representation result. """ model_settings = self["model_settings"] res_xlsx_dict = {} if model_settings["use_table_recognition"] and len(self["table_res_list"]) > 0: for sno in range(len(self["table_res_list"])): table_res = self["table_res_list"][sno] table_region_id = table_res["table_region_id"] key = f"table_{table_region_id}" res_xlsx_dict[key] = table_res.xlsx["pred"] return res_xlsx_dict def save_to_pdf_order(self, save_path): """ Save the layout ordering to an image file. Args: save_path (str or Path): The path where the image should be saved. font_path (str): Path to the font file used for drawing text. Returns: None """ input_name = self["input_path"] save_path = Path(save_path) if save_path.suffix.lower() not in (".jpg", ".png"): save_path = save_path / f"{input_name}.jpg" else: save_path = save_path.with_suffix("") ordering_image_path = save_path.parent / f"{save_path.stem}_ordering.jpg" try: image = Image.fromarray(self["doc_preprocessor_res"]["output_img"]) except OSError as e: print(f"Error opening image: {e}") return draw = ImageDraw.Draw(image, "RGBA") parsing_result = self["layout_parsing_result"] for block in parsing_result: if self.already_sorted == False: block = get_layout_ordering( block, no_mask_labels=[ "text", "formula", "algorithm", "reference", "content", "abstract", ], already_sorted=self.already_sorted, ) sub_blocks = block["sub_blocks"] for sub_block in sub_blocks: bbox = sub_block["layout_bbox"] index = sub_block.get("index", None) label = sub_block["sub_label"] fill_color = get_show_color(label) draw.rectangle(bbox, fill=fill_color) if index is not None: text_position = (bbox[2] + 2, bbox[1] - 10) draw.text(text_position, str(index), fill="red") self.already_sorted == True # Ensure the directory exists and save the image ordering_image_path.parent.mkdir(parents=True, exist_ok=True) print(f"Saving ordering image to {ordering_image_path}") image.save(str(ordering_image_path)) def _to_markdown(self): """ Save the parsing result to a Markdown file. Returns: Dict """ save_path = Path(self.save_path) parsing_result = self["layout_parsing_result"] for block in parsing_result: if self.already_sorted == False: block = get_layout_ordering( block, no_mask_labels=[ "text", "formula", "algorithm", "reference", "content", "abstract", ], already_sorted=self.already_sorted, ) self.already_sorted == True recursive_img_array2path( self["layout_parsing_result"], save_path.parent, labels=["img"], ) def _format_data(obj): def format_title(content_value): content_value = content_value.rstrip(".") level = ( content_value.count( ".", ) + 1 if "." in content_value else 1 ) return f"{'#' * level} {content_value}".replace("-\n", "").replace( "\n", " ", ) def format_centered_text(key): return ( f'