# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from typing import Any, Dict, Optional from ..predictors import create_predictor from ...utils.subclass_register import AutoRegisterABCMetaClass def create_pipeline( pipeline_name: str, model_list: list, model_dir_list: list, output: str, device: str, use_hpip: bool, hpi_params: Optional[Dict[str, Any]] = None, ) -> "BasePipeline": """build model evaluater Args: pipeline_name (str): the pipeline name, that is name of pipeline class Returns: BasePipeline: the pipeline, which is subclass of BasePipeline. """ predictor_kwargs = {"use_hpip": use_hpip} if hpi_params is not None: predictor_kwargs["hpi_params"] = hpi_params pipeline = BasePipeline.get(pipeline_name)( output=output, device=device, predictor_kwargs=predictor_kwargs ) pipeline.update_model(model_list, model_dir_list) pipeline.load_model() return pipeline class BasePipeline(ABC, metaclass=AutoRegisterABCMetaClass): """Base Pipeline""" __is_base = True def __init__(self, predictor_kwargs: Optional[Dict[str, Any]]) -> None: super().__init__() if predictor_kwargs is None: predictor_kwargs = {} self._predictor_kwargs = predictor_kwargs # alias the __call__() to predict() def __call__(self, *args, **kwargs): yield from self.predict(*args, **kwargs) def _create_predictor(self, *args, **kwargs): return create_predictor(*args, **kwargs, **self._predictor_kwargs)