# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List from .....utils.deps import function_requires_deps, is_dep_available from ...infra import utils as serving_utils from ...infra.config import AppConfig from ...infra.models import AIStudioResultResponse from ...schemas.object_detection import INFER_ENDPOINT, InferRequest, InferResult from .._app import create_app, primary_operation if is_dep_available("fastapi"): from fastapi import FastAPI @function_requires_deps("fastapi") def create_pipeline_app(pipeline: Any, app_config: AppConfig) -> "FastAPI": app, ctx = create_app( pipeline=pipeline, app_config=app_config, app_aiohttp_session=True ) @primary_operation( app, INFER_ENDPOINT, "infer", ) async def _infer(request: InferRequest) -> AIStudioResultResponse[InferResult]: pipeline = ctx.pipeline aiohttp_session = ctx.aiohttp_session visualize_enabled = ( request.visualize if request.visualize is not None else ctx.config.visualize ) file_bytes = await serving_utils.get_raw_bytes_async( request.image, aiohttp_session ) image = serving_utils.image_bytes_to_array(file_bytes) result = ( await pipeline.infer( image, threshold=request.threshold, ) )[0] objects: List[Dict[str, Any]] = [] for obj in result["boxes"]: objects.append( dict( bbox=obj["coordinate"], categoryId=obj["cls_id"], categoryName=obj["label"], score=obj["score"], ) ) if visualize_enabled: output_image_base64 = serving_utils.base64_encode( serving_utils.image_to_bytes(result.img["res"]) ) else: output_image_base64 = None return AIStudioResultResponse[InferResult]( logId=serving_utils.generate_log_id(), result=InferResult(detectedObjects=objects, image=output_image_base64), ) return app