// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include "yaml-cpp/yaml.h" #include "model_deploy/common/include/base_postprocess.h" #include "model_deploy/common/include/base_preprocess.h" #include "model_deploy/common/include/output_struct.h" #include "model_deploy/engine/include/engine.h" namespace PaddleDeploy { class Model { private: const std::string model_type_; public: /*store the data after the YAML file has been parsed */ YAML::Node yaml_config_; /* preprocess */ std::shared_ptr preprocess_; /* inference */ std::shared_ptr infer_engine_; /* postprocess */ std::shared_ptr postprocess_; Model() {} // Init model_type. explicit Model(const std::string model_type) : model_type_(model_type) {} virtual bool Init(const std::string& cfg_file) { if (!YamlConfigInit(cfg_file)) return false; if (!PreprocessInit()) return false; if (!PostprocessInit()) return false; return true; } virtual bool YamlConfigInit(const std::string& cfg_file) { YAML::Node yaml_config_ = YAML::LoadFile(cfg_file); return true; } virtual bool PreprocessInit() { preprocess_ = nullptr; std::cerr << "model no Preprocess!" << std::endl; return false; } bool PaddleEngineInit(const std::string& model_filename, const std::string& params_filename, bool use_gpu = false, int gpu_id = 0, bool use_mkl = true, int mkl_thread_num = 8); bool TritonEngineInit(const std::string& url, const std::string& model_name, const std::string& model_version, bool verbose = false); bool TensorRTInit(const std::string& model_file, const std::string& cfg_file, const int gpu_id = 0, const bool save_engine = false, std::string trt_cache_file = ""); virtual bool PostprocessInit() { postprocess_ = nullptr; std::cerr << "model no Postprocess!" << std::endl; return false; } virtual bool Predict(const std::vector& imgs, std::vector* results, int thread_num = 1) { if (!preprocess_ || !postprocess_ || !infer_engine_) { std::cerr << "No init,cann't predict" << std::endl; return false; } results->clear(); std::vector imgs_clone; for (auto i = 0; i < imgs.size(); ++i) { imgs_clone.push_back(imgs[i].clone()); } std::vector shape_infos; std::vector inputs; std::vector outputs; if (!preprocess_->Run(&imgs_clone, &inputs, &shape_infos, thread_num)) return false; if (!infer_engine_->Infer(inputs, &outputs)) return false; if (!postprocess_->Run(outputs, shape_infos, results, thread_num)) return false; return true; } virtual bool PrePrecess(const std::vector& imgs, std::vector* inputs, std::vector* shape_infos, int thread_num = 1) { if (!preprocess_) { std::cerr << "No PrePrecess, No pre Init. model_type=" << model_type_ << std::endl; return false; } std::vector imgs_clone(imgs.size()); for (auto i = 0; i < imgs.size(); ++i) { imgs[i].copyTo(imgs_clone[i]); } if (!preprocess_->Run(&imgs_clone, inputs, shape_infos, thread_num)) return false; return true; } virtual void Infer(const std::vector& inputs, std::vector* outputs) { infer_engine_->Infer(inputs, outputs); } virtual bool PostPrecess(const std::vector& outputs, const std::vector& shape_infos, std::vector* results, int thread_num = 1) { if (!postprocess_) { std::cerr << "No PostPrecess, No post Init. model_type=" << model_type_ << std::endl; return false; } if (postprocess_->Run(outputs, shape_infos, results, thread_num)) return false; return true; } }; } // namespace PaddleDeploy