# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import paddle import paddle.nn as nn import paddle.nn.functional as F def SyncBatchNorm(*args, **kwargs): """In cpu environment nn.SyncBatchNorm does not have kernel so use nn.BatchNorm2D instead""" if paddle.get_device() == 'cpu' or os.environ.get( 'PADDLESEG_EXPORT_STAGE'): return nn.BatchNorm2D(*args, **kwargs) else: return nn.SyncBatchNorm(*args, **kwargs) class ConvBNReLU(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, padding='same', **kwargs): super().__init__() self._conv = nn.Conv2D( in_channels, out_channels, kernel_size, padding=padding, **kwargs) self._batch_norm = SyncBatchNorm(out_channels) def forward(self, x): x = self._conv(x) x = self._batch_norm(x) x = F.relu(x) return x class ConvBN(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, padding='same', **kwargs): super().__init__() self._conv = nn.Conv2D( in_channels, out_channels, kernel_size, padding=padding, **kwargs) self._batch_norm = SyncBatchNorm(out_channels) def forward(self, x): x = self._conv(x) x = self._batch_norm(x) return x class ConvReLUPool(nn.Layer): def __init__(self, in_channels, out_channels): super().__init__() self.conv = nn.Conv2D( in_channels, out_channels, kernel_size=3, stride=1, padding=1, dilation=1) def forward(self, x): x = self.conv(x) x = F.relu(x) x = F.pool2d(x, pool_size=2, pool_type="max", pool_stride=2) return x class SeparableConvBNReLU(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, padding='same', **kwargs): super().__init__() self.depthwise_conv = ConvBN( in_channels, out_channels=in_channels, kernel_size=kernel_size, padding=padding, groups=in_channels, **kwargs) self.piontwise_conv = ConvBNReLU( in_channels, out_channels, kernel_size=1, groups=1) def forward(self, x): x = self.depthwise_conv(x) x = self.piontwise_conv(x) return x class DepthwiseConvBN(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, padding='same', **kwargs): super().__init__() self.depthwise_conv = ConvBN( in_channels, out_channels=out_channels, kernel_size=kernel_size, padding=padding, groups=in_channels, **kwargs) def forward(self, x): x = self.depthwise_conv(x) return x class AuxLayer(nn.Layer): """ The auxiliary layer implementation for auxiliary loss. Args: in_channels (int): The number of input channels. inter_channels (int): The intermediate channels. out_channels (int): The number of output channels, and usually it is num_classes. dropout_prob (float, optional): The drop rate. Default: 0.1. """ def __init__(self, in_channels, inter_channels, out_channels, dropout_prob=0.1): super().__init__() self.conv_bn_relu = ConvBNReLU( in_channels=in_channels, out_channels=inter_channels, kernel_size=3, padding=1) self.dropout = nn.Dropout(p=dropout_prob) self.conv = nn.Conv2D( in_channels=inter_channels, out_channels=out_channels, kernel_size=1) def forward(self, x): x = self.conv_bn_relu(x) x = self.dropout(x) x = self.conv(x) return x