#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import os import cv2 import numpy as np import matplotlib as mpl import matplotlib.figure as mplfigure import matplotlib.colors as mplc from matplotlib.backends.backend_agg import FigureCanvasAgg def visualize_detection(image, result, threshold=0.5, save_dir=None): """ Visualize bbox and mask results """ image_name = os.path.split(image)[-1] image = cv2.imread(image) image = draw_bbox_mask(image, result, threshold=threshold) if save_dir is not None: if not os.path.exists(save_dir): os.makedirs(save_dir) out_path = os.path.join(save_dir, 'visualize_{}'.format(image_name)) cv2.imwrite(out_path, image) else: return image def visualize_segmentation(image, result, weight=0.6, save_dir=None): """ Convert segment result to color image, and save added image. Args: image: the path of origin image result: the predict result of image weight: the image weight of visual image, and the result weight is (1 - weight) save_dir: the directory for saving visual image """ label_map = result['label_map'] color_map = get_color_map_list(256) color_map = np.array(color_map).astype("uint8") # Use OpenCV LUT for color mapping c1 = cv2.LUT(label_map, color_map[:, 0]) c2 = cv2.LUT(label_map, color_map[:, 1]) c3 = cv2.LUT(label_map, color_map[:, 2]) pseudo_img = np.dstack((c1, c2, c3)) im = cv2.imread(image) vis_result = cv2.addWeighted(im, weight, pseudo_img, 1 - weight, 0) if save_dir is not None: if not os.path.exists(save_dir): os.makedirs(save_dir) image_name = os.path.split(image)[-1] out_path = os.path.join(save_dir, 'visualize_{}'.format(image_name)) cv2.imwrite(out_path, vis_result) else: return vis_result def get_color_map_list(num_classes): """ Returns the color map for visualizing the segmentation mask, which can support arbitrary number of classes. Args: num_classes: Number of classes Returns: The color map """ color_map = num_classes * [0, 0, 0] for i in range(0, num_classes): j = 0 lab = i while lab: color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) j += 1 lab >>= 3 color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)] return color_map # expand an array of boxes by a given scale. def expand_boxes(boxes, scale): """ """ w_half = (boxes[:, 2] - boxes[:, 0]) * .5 h_half = (boxes[:, 3] - boxes[:, 1]) * .5 x_c = (boxes[:, 2] + boxes[:, 0]) * .5 y_c = (boxes[:, 3] + boxes[:, 1]) * .5 w_half *= scale h_half *= scale boxes_exp = np.zeros(boxes.shape) boxes_exp[:, 0] = x_c - w_half boxes_exp[:, 2] = x_c + w_half boxes_exp[:, 1] = y_c - h_half boxes_exp[:, 3] = y_c + h_half return boxes_exp def clip_bbox(bbox): xmin = max(min(bbox[0], 1.), 0.) ymin = max(min(bbox[1], 1.), 0.) xmax = max(min(bbox[2], 1.), 0.) ymax = max(min(bbox[3], 1.), 0.) return xmin, ymin, xmax, ymax def draw_bbox_mask(image, results, threshold=0.5): # refer to https://github.com/facebookresearch/detectron2/blob/master/detectron2/utils/visualizer.py _SMALL_OBJECT_AREA_THRESH = 1000 # setup figure width, height = image.shape[1], image.shape[0] scale = 1 fig = mplfigure.Figure(frameon=False) dpi = fig.get_dpi() fig.set_size_inches( (width * scale + 1e-2) / dpi, (height * scale + 1e-2) / dpi, ) canvas = FigureCanvasAgg(fig) ax = fig.add_axes([0.0, 0.0, 1.0, 1.0]) ax.axis("off") ax.set_xlim(0.0, width) ax.set_ylim(height) default_font_size = max(np.sqrt(height * width) // 90, 10 // scale) linewidth = max(default_font_size / 4, 1) labels = list() for dt in np.array(results): if dt['category'] not in labels: labels.append(dt['category']) color_map = get_color_map_list(256) keep_results = [] areas = [] for dt in np.array(results): cname, bbox, score = dt['category'], dt['bbox'], dt['score'] if score < threshold: continue keep_results.append(dt) areas.append(bbox[2] * bbox[3]) areas = np.asarray(areas) sorted_idxs = np.argsort(-areas).tolist() keep_results = [keep_results[k] for k in sorted_idxs] if len(keep_results) > 0 else [] for dt in np.array(keep_results): cname, bbox, score = dt['category'], dt['bbox'], dt['score'] xmin, ymin, w, h = bbox xmax = xmin + w ymax = ymin + h color = tuple(color_map[labels.index(cname) + 2]) color = [c / 255. for c in color] # draw bbox ax.add_patch( mpl.patches.Rectangle( (xmin, ymin), w, h, fill=False, edgecolor=color, linewidth=linewidth * scale, alpha=0.5, linestyle="-", )) # draw mask if 'mask' in dt: mask = dt['mask'] mask = np.ascontiguousarray(mask) res = cv2.findContours( mask.astype("uint8"), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) hierarchy = res[-1] alpha = 0.75 if hierarchy is not None: has_holes = (hierarchy.reshape(-1, 4)[:, 3] >= 0).sum() > 0 res = res[-2] res = [x.flatten() for x in res] res = [x for x in res if len(x) >= 6] for segment in res: segment = segment.reshape(-1, 2) edge_color = mplc.to_rgb(color) + (1, ) polygon = mpl.patches.Polygon( segment, fill=True, facecolor=mplc.to_rgb(color) + (alpha, ), edgecolor=edge_color, linewidth=max(default_font_size // 15 * scale, 1), ) ax.add_patch(polygon) # draw label text_pos = (xmin, ymin) horiz_align = "left" instance_area = w * h if (instance_area < _SMALL_OBJECT_AREA_THRESH * scale or h < 40 * scale): if ymin >= height - 5: text_pos = (xmin, ymin) else: text_pos = (xmin, ymax) height_ratio = h / np.sqrt(height * width) font_size = (np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2) * 0.5 * default_font_size) text = "{} {:.2f}".format(cname, score) color = np.maximum(list(mplc.to_rgb(color)), 0.2) color[np.argmax(color)] = max(0.8, np.max(color)) ax.text( text_pos[0], text_pos[1], text, size=font_size * scale, family="sans-serif", bbox={ "facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none" }, verticalalignment="top", horizontalalignment=horiz_align, color=color, zorder=10, rotation=0, ) s, (width, height) = canvas.print_to_buffer() buffer = np.frombuffer(s, dtype="uint8") img_rgba = buffer.reshape(height, width, 4) rgb, alpha = np.split(img_rgba, [3], axis=2) try: import numexpr as ne visualized_image = ne.evaluate( "image * (1 - alpha / 255.0) + rgb * (alpha / 255.0)") except ImportError: alpha = alpha.astype("float32") / 255.0 visualized_image = image * (1 - alpha) + rgb * alpha visualized_image = visualized_image.astype("uint8") return visualized_image