Global: model: SegFormer-B0 mode: check_dataset # check_dataset/train/evaluate/predict dataset_dir: "/paddle/dataset/paddlex/seg/seg_optic_examples" device: gpu:0,1,2,3 output: "output" CheckDataset: convert: enable: False src_dataset_type: null split: enable: False train_percent: null val_percent: null Train: epochs_iters: 500 num_classes: 2 batch_size: 2 learning_rate: 0.01 pretrain_weight_path: https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/SegFormer-B0_backbone_imagenet_pretrained.pdparams # use MixVisionTransformer_B0 pretrained warmup_steps: 0 resume_path: null log_interval: 10 eval_interval: 100 Evaluate: weight_path: "output/best_model/model.pdparams" log_interval: 10 Export: weight_path: https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/SegFormer-B0_pretrained.pdparams Predict: batch_size: 1 model_dir: "output/best_model/inference" input: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_semantic_segmentation_002.png" kernel_option: run_mode: paddle