# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ...modules.base import create_model from ...modules.image_classification.predictor import transforms as T from ...modules.base.predictor.utils.paddle_inference_predictor import PaddleInferenceOption class ClsPipeline(object): """Cls Pipeline """ def __init__(self, model_name, model_dir=None, output_dir="./output", kernel_option=None): self.output_dir = output_dir post_transforms = self.get_post_transforms(model_dir) kernel_option = self.get_kernel_option( ) if kernel_option is None else kernel_option self.model = create_model( model_name, model_dir=model_dir, kernel_option=kernel_option, post_transforms=post_transforms) def __call__(self, input_path): return self.model.predict({"input_path": input_path}) def get_post_transforms(self, model_dir): """get post transform ops """ return [T.Topk(topk=1), T.PrintResult()] def get_kernel_option(self): """get kernel option """ kernel_option = PaddleInferenceOption() kernel_option.set_device("gpu")