# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from pathlib import Path from ...utils.misc import abspath from ..image_classification import ClsTrainer from .model_list import MODELS class FaceRecTrainer(ClsTrainer): """Face Recognition Model Trainer""" entities = MODELS def update_config(self): """update training config""" if self.train_config.log_interval: self.pdx_config.update_log_interval(self.train_config.log_interval) if self.train_config.eval_interval: self.pdx_config.update_eval_interval(self.train_config.eval_interval) if self.train_config.save_interval: self.pdx_config.update_save_interval(self.train_config.save_interval) self.update_dataset_cfg() if self.train_config.num_classes is not None: self.pdx_config.update_num_classes(self.train_config.num_classes) if self.train_config.pretrain_weight_path != "": self.pdx_config.update_pretrained_weights( self.train_config.pretrain_weight_path ) label_dict_path = Path(self.global_config.dataset_dir).joinpath("label.txt") if label_dict_path.exists(): self.dump_label_dict(label_dict_path) if self.train_config.batch_size is not None: self.pdx_config.update_batch_size(self.train_config.batch_size) if self.train_config.learning_rate is not None: self.pdx_config.update_learning_rate(self.train_config.learning_rate) if self.train_config.epochs_iters is not None: self.pdx_config._update_epochs(self.train_config.epochs_iters) if self.train_config.warmup_steps is not None: self.pdx_config.update_warmup_epochs(self.train_config.warmup_steps) if self.global_config.output is not None: self.pdx_config._update_output_dir(self.global_config.output) def update_dataset_cfg(self): train_dataset_dir = abspath( os.path.join(self.global_config.dataset_dir, "train") ) val_dataset_dir = abspath(os.path.join(self.global_config.dataset_dir, "val")) train_list_path = abspath(os.path.join(train_dataset_dir, "label.txt")) val_list_path = abspath(os.path.join(val_dataset_dir, "pair_label.txt")) ds_cfg = [ f"DataLoader.Train.dataset.name=ClsDataset", f"DataLoader.Train.dataset.image_root={train_dataset_dir}", f"DataLoader.Train.dataset.cls_label_path={train_list_path}", f"DataLoader.Eval.dataset.name=FaceEvalDataset", f"DataLoader.Eval.dataset.dataset_root={val_dataset_dir}", f"DataLoader.Eval.dataset.pair_label_path={val_list_path}", ] self.pdx_config.update(ds_cfg)