# global configs Global: checkpoints: null pretrained_model: null output_dir: ./output/ device: gpu save_interval: 10 eval_during_train: True eval_interval: 1 epochs: 40 print_batch_step: 10 use_visualdl: False # used for static mode and model export image_shape: [3, 448, 448] save_inference_dir: ./inference # training model under @to_static to_static: False use_multilabel: True # mixed precision AMP: use_amp: True use_fp16_test: False scale_loss: 128.0 use_dynamic_loss_scaling: True use_promote: False # O1: mixed fp16, O2: pure fp16 level: O1 # model ema EMA: decay: 0.9997 # model architecture Arch: name: ResNet50 class_num: 80 pretrained: True use_ml_decoder: True # ml-decoder head MLDecoder: query_num: 80 # default: 80, query_num <= class_num in_channels: 2048 # loss function config for training/eval process Loss: Train: - MultiLabelAsymmetricLoss: weight: 1.0 gamma_pos: 0 gamma_neg: 4 clip: 0.05 disable_focal_loss_grad: True Eval: - MultiLabelAsymmetricLoss: weight: 1.0 gamma_pos: 0 gamma_neg: 4 clip: 0.05 disable_focal_loss_grad: True Optimizer: name: AdamW beta1: 0.9 beta2: 0.999 epsilon: 1e-8 weight_decay: 1e-4 one_dim_param_no_weight_decay: True lr: name: Cosine learning_rate: 1e-4 eta_min: 1e-10 warmup_epoch: 5 warmup_start_lr: 1e-6 # data loader for train and eval DataLoader: Train: dataset: name: MultiLabelDataset image_root: dataset/coco_ml/images cls_label_path: dataset/coco_ml/train.txt transform_ops: - DecodeImage: to_rgb: True channel_first: False - ResizeImage: size: 448 interpolation: bilinear backend: pil - Cutout: length: 224 fill_value: none - RandAugmentV4: - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' sampler: name: DistributedBatchSampler batch_size: 64 drop_last: False shuffle: True loader: num_workers: 8 use_shared_memory: True Eval: dataset: name: MultiLabelDataset image_root: dataset/coco_ml/images cls_label_path: dataset/coco_ml/val.txt transform_ops: - DecodeImage: to_rgb: True channel_first: False - ResizeImage: size: 448 interpolation: bilinear backend: pil - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' sampler: name: DistributedBatchSampler batch_size: 16 drop_last: False shuffle: False loader: num_workers: 8 use_shared_memory: True Infer: infer_imgs: deploy/images/coco_000000570688.jpg batch_size: 10 transforms: - DecodeImage: to_rgb: True channel_first: False - ResizeImage: size: 448 interpolation: bilinear backend: pil - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - ToCHWImage: PostProcess: name: MultiLabelThreshOutput threshold: 0.5 class_id_map_file: ppcls/utils/COCO2017_label_list.txt Metric: Train: Eval: - MultiLabelMAP: # support list: integral, 11point # default: integral map_type: integral