# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import subprocess from os import PathLike from pathlib import Path from typing import List, Sequence, Union import numpy as np from ....utils import logging from ....utils.deps import class_requires_deps from ....utils.flags import DEBUG, USE_PIR_TRT from ...utils.benchmark import benchmark, set_inference_operations from ...utils.hpi import ( HPIConfig, OMConfig, ONNXRuntimeConfig, OpenVINOConfig, TensorRTConfig, suggest_inference_backend_and_config, ) from ...utils.model_paths import get_model_paths from ...utils.pp_option import PaddlePredictorOption from ...utils.trt_config import DISABLE_TRT_HALF_OPS_CONFIG CACHE_DIR = ".cache" INFERENCE_OPERATIONS = [ "PaddleInferChainLegacy", "MultiBackendInfer", ] set_inference_operations(INFERENCE_OPERATIONS) # XXX: Better use Paddle Inference API to do this def _pd_dtype_to_np_dtype(pd_dtype): import paddle if pd_dtype == paddle.inference.DataType.FLOAT64: return np.float64 elif pd_dtype == paddle.inference.DataType.FLOAT32: return np.float32 elif pd_dtype == paddle.inference.DataType.INT64: return np.int64 elif pd_dtype == paddle.inference.DataType.INT32: return np.int32 elif pd_dtype == paddle.inference.DataType.UINT8: return np.uint8 elif pd_dtype == paddle.inference.DataType.INT8: return np.int8 else: raise TypeError(f"Unsupported data type: {pd_dtype}") # old trt def _collect_trt_shape_range_info( model_file, model_params, gpu_id, shape_range_info_path, dynamic_shapes, dynamic_shape_input_data, ): import paddle.inference dynamic_shape_input_data = dynamic_shape_input_data or {} config = paddle.inference.Config(model_file, model_params) config.enable_use_gpu(100, gpu_id) config.collect_shape_range_info(shape_range_info_path) # TODO: Add other needed options config.disable_glog_info() predictor = paddle.inference.create_predictor(config) input_names = predictor.get_input_names() for name in dynamic_shapes: if name not in input_names: raise ValueError( f"Invalid input name {repr(name)} found in `dynamic_shapes`" ) for name in input_names: if name not in dynamic_shapes: raise ValueError(f"Input name {repr(name)} not found in `dynamic_shapes`") for name in dynamic_shape_input_data: if name not in input_names: raise ValueError( f"Invalid input name {repr(name)} found in `dynamic_shape_input_data`" ) # It would be better to check if the shapes are valid. min_arrs, opt_arrs, max_arrs = {}, {}, {} for name, candidate_shapes in dynamic_shapes.items(): # XXX: Currently we have no way to get the data type of the tensor # without creating an input handle. handle = predictor.get_input_handle(name) dtype = _pd_dtype_to_np_dtype(handle.type()) min_shape, opt_shape, max_shape = candidate_shapes if name in dynamic_shape_input_data: min_arrs[name] = np.array( dynamic_shape_input_data[name][0], dtype=dtype ).reshape(min_shape) opt_arrs[name] = np.array( dynamic_shape_input_data[name][1], dtype=dtype ).reshape(opt_shape) max_arrs[name] = np.array( dynamic_shape_input_data[name][2], dtype=dtype ).reshape(max_shape) else: min_arrs[name] = np.ones(min_shape, dtype=dtype) opt_arrs[name] = np.ones(opt_shape, dtype=dtype) max_arrs[name] = np.ones(max_shape, dtype=dtype) # `opt_arrs` is used twice to ensure it is the most frequently used. for arrs in [min_arrs, opt_arrs, opt_arrs, max_arrs]: for name, arr in arrs.items(): handle = predictor.get_input_handle(name) handle.reshape(arr.shape) handle.copy_from_cpu(arr) predictor.run() # HACK: The shape range info will be written to the file only when # `predictor` is garbage collected. It works in CPython, but it is # definitely a bad idea to count on the implementation-dependent behavior of # a garbage collector. Is there a more explicit and deterministic way to # handle this? # HACK: Manually delete the predictor to trigger its destructor, ensuring that the shape_range_info file would be saved. del predictor # pir trt def _convert_trt( trt_cfg_setting, pp_model_file, pp_params_file, trt_save_path, device_id, dynamic_shapes, dynamic_shape_input_data, ): import paddle.inference from paddle.tensorrt.export import Input, TensorRTConfig, convert def _set_trt_config(): for attr_name in trt_cfg_setting: assert hasattr( trt_config, attr_name ), f"The `{type(trt_config)}` don't have the attribute `{attr_name}`!" setattr(trt_config, attr_name, trt_cfg_setting[attr_name]) def _get_predictor(model_file, params_file): # HACK config = paddle.inference.Config(str(model_file), str(params_file)) config.enable_use_gpu(100, device_id) # NOTE: Disable oneDNN to circumvent a bug in Paddle Inference config.disable_mkldnn() config.disable_glog_info() return paddle.inference.create_predictor(config) dynamic_shape_input_data = dynamic_shape_input_data or {} predictor = _get_predictor(pp_model_file, pp_params_file) input_names = predictor.get_input_names() for name in dynamic_shapes: if name not in input_names: raise ValueError( f"Invalid input name {repr(name)} found in `dynamic_shapes`" ) for name in input_names: if name not in dynamic_shapes: raise ValueError(f"Input name {repr(name)} not found in `dynamic_shapes`") for name in dynamic_shape_input_data: if name not in input_names: raise ValueError( f"Invalid input name {repr(name)} found in `dynamic_shape_input_data`" ) trt_inputs = [] for name, candidate_shapes in dynamic_shapes.items(): # XXX: Currently we have no way to get the data type of the tensor # without creating an input handle. handle = predictor.get_input_handle(name) dtype = _pd_dtype_to_np_dtype(handle.type()) min_shape, opt_shape, max_shape = candidate_shapes if name in dynamic_shape_input_data: min_arr = np.array(dynamic_shape_input_data[name][0], dtype=dtype).reshape( min_shape ) opt_arr = np.array(dynamic_shape_input_data[name][1], dtype=dtype).reshape( opt_shape ) max_arr = np.array(dynamic_shape_input_data[name][2], dtype=dtype).reshape( max_shape ) else: min_arr = np.ones(min_shape, dtype=dtype) opt_arr = np.ones(opt_shape, dtype=dtype) max_arr = np.ones(max_shape, dtype=dtype) # refer to: https://github.com/PolaKuma/Paddle/blob/3347f225bc09f2ec09802a2090432dd5cb5b6739/test/tensorrt/test_converter_model_resnet50.py trt_input = Input((min_arr, opt_arr, max_arr)) trt_inputs.append(trt_input) # Create TensorRTConfig trt_config = TensorRTConfig(inputs=trt_inputs) _set_trt_config() trt_config.save_model_dir = str(trt_save_path) pp_model_path = str(pp_model_file.with_suffix("")) convert(pp_model_path, trt_config) def _sort_inputs(inputs, names): # NOTE: Adjust input tensors to match the sorted sequence. indices = sorted(range(len(names)), key=names.__getitem__) inputs = [inputs[indices.index(i)] for i in range(len(inputs))] return inputs # FIXME: Name might be misleading @benchmark.timeit class PaddleInferChainLegacy: def __init__(self, predictor): self.predictor = predictor input_names = self.predictor.get_input_names() self.input_handles = [] self.output_handles = [] for input_name in input_names: input_handle = self.predictor.get_input_handle(input_name) self.input_handles.append(input_handle) output_names = self.predictor.get_output_names() for output_name in output_names: output_handle = self.predictor.get_output_handle(output_name) self.output_handles.append(output_handle) def __call__(self, x): for input_, input_handle in zip(x, self.input_handles): input_handle.reshape(input_.shape) input_handle.copy_from_cpu(input_) self.predictor.run() outputs = [o.copy_to_cpu() for o in self.output_handles] return outputs class StaticInfer(metaclass=abc.ABCMeta): @abc.abstractmethod def __call__(self, x: Sequence[np.ndarray]) -> List[np.ndarray]: raise NotImplementedError class PaddleInfer(StaticInfer): def __init__( self, model_dir: Union[str, PathLike], model_file_prefix: str, option: PaddlePredictorOption, ) -> None: super().__init__() self.model_dir = Path(model_dir) self.model_file_prefix = model_file_prefix self._option = option self.predictor = self._create() self.infer = PaddleInferChainLegacy(self.predictor) def __call__(self, x: Sequence[np.ndarray]) -> List[np.ndarray]: names = self.predictor.get_input_names() if len(names) != len(x): raise ValueError( f"The number of inputs does not match the model: {len(names)} vs {len(x)}" ) # TODO: # Ensure that input tensors follow the model's input sequence without sorting. x = _sort_inputs(x, names) x = list(map(np.ascontiguousarray, x)) pred = self.infer(x) return pred def _create( self, ): """_create""" import paddle import paddle.inference model_paths = get_model_paths(self.model_dir, self.model_file_prefix) if "paddle" not in model_paths: raise RuntimeError("No valid PaddlePaddle model found") model_file, params_file = model_paths["paddle"] if ( self._option.model_name == "LaTeX_OCR_rec" and self._option.device_type == "cpu" ): import cpuinfo if ( "GenuineIntel" in cpuinfo.get_cpu_info().get("vendor_id_raw", "") and self._option.run_mode != "mkldnn" ): logging.warning( "Now, the `LaTeX_OCR_rec` model only support `mkldnn` mode when running on Intel CPU devices. So using `mkldnn` instead." ) self._option.run_mode = "mkldnn" logging.debug("`run_mode` updated to 'mkldnn'") if self._option.device_type == "cpu" and self._option.device_id is not None: self._option.device_id = None logging.debug("`device_id` has been set to None") if ( self._option.device_type in ("gpu", "dcu", "npu", "mlu", "gcu", "xpu") and self._option.device_id is None ): self._option.device_id = 0 logging.debug("`device_id` has been set to 0") # for TRT if self._option.run_mode.startswith("trt"): assert self._option.device_type == "gpu" cache_dir = self.model_dir / CACHE_DIR / "paddle" config = self._configure_trt( model_file, params_file, cache_dir, ) config.exp_disable_mixed_precision_ops({"feed", "fetch"}) config.enable_use_gpu(100, self._option.device_id) # for Native Paddle and MKLDNN else: config = paddle.inference.Config(str(model_file), str(params_file)) if self._option.device_type == "gpu": config.exp_disable_mixed_precision_ops({"feed", "fetch"}) from paddle.inference import PrecisionType precision = ( PrecisionType.Half if self._option.run_mode == "paddle_fp16" else PrecisionType.Float32 ) config.disable_mkldnn() config.enable_use_gpu(100, self._option.device_id, precision) if hasattr(config, "enable_new_ir"): config.enable_new_ir(self._option.enable_new_ir) if self._option.enable_new_ir and self._option.enable_cinn: config.enable_cinn() if hasattr(config, "enable_new_executor"): config.enable_new_executor() config.set_optimization_level(3) elif self._option.device_type == "npu": config.enable_custom_device("npu", self._option.device_id) if hasattr(config, "enable_new_ir"): config.enable_new_ir(self._option.enable_new_ir) if hasattr(config, "enable_new_executor"): config.enable_new_executor() elif self._option.device_type == "xpu": config.enable_xpu() config.set_xpu_device_id(self._option.device_id) if hasattr(config, "enable_new_ir"): config.enable_new_ir(self._option.enable_new_ir) if hasattr(config, "enable_new_executor"): config.enable_new_executor() config.delete_pass("conv2d_bn_xpu_fuse_pass") config.delete_pass("transfer_layout_pass") elif self._option.device_type == "mlu": config.enable_custom_device("mlu", self._option.device_id) if hasattr(config, "enable_new_ir"): config.enable_new_ir(self._option.enable_new_ir) if hasattr(config, "enable_new_executor"): config.enable_new_executor() elif self._option.device_type == "gcu": from paddle_custom_device.gcu import passes as gcu_passes gcu_passes.setUp() config.enable_custom_device("gcu", self._option.device_id) if hasattr(config, "enable_new_ir"): config.enable_new_ir() if hasattr(config, "enable_new_executor"): config.enable_new_executor() else: pass_builder = config.pass_builder() name = "PaddleX_" + self._option.model_name gcu_passes.append_passes_for_legacy_ir(pass_builder, name) elif self._option.device_type == "dcu": if hasattr(config, "enable_new_ir"): config.enable_new_ir(self._option.enable_new_ir) config.enable_use_gpu(100, self._option.device_id) if hasattr(config, "enable_new_executor"): config.enable_new_executor() # XXX: is_compiled_with_rocm() must be True on dcu platform ? if paddle.is_compiled_with_rocm(): # Delete unsupported passes in dcu config.delete_pass("conv2d_add_act_fuse_pass") config.delete_pass("conv2d_add_fuse_pass") else: assert self._option.device_type == "cpu" config.disable_gpu() if "mkldnn" in self._option.run_mode: if hasattr(config, "set_mkldnn_cache_capacity"): config.enable_mkldnn() if "bf16" in self._option.run_mode: config.enable_mkldnn_bfloat16() config.set_mkldnn_cache_capacity(self._option.mkldnn_cache_capacity) else: logging.warning( "MKL-DNN is not available. We will disable MKL-DNN." ) else: if hasattr(config, "disable_mkldnn"): config.disable_mkldnn() config.set_cpu_math_library_num_threads(self._option.cpu_threads) if hasattr(config, "enable_new_ir"): config.enable_new_ir(self._option.enable_new_ir) if hasattr(config, "enable_new_executor"): config.enable_new_executor() config.set_optimization_level(3) config.enable_memory_optim() for del_p in self._option.delete_pass: config.delete_pass(del_p) # Disable paddle inference logging if not DEBUG: config.disable_glog_info() predictor = paddle.inference.create_predictor(config) return predictor def _configure_trt(self, model_file, params_file, cache_dir): # TODO: Support calibration import paddle.inference if USE_PIR_TRT: if self._option.trt_dynamic_shapes is None: raise RuntimeError("No dynamic shape information provided") trt_save_path = cache_dir / "trt" / self.model_file_prefix trt_model_file = trt_save_path.with_suffix(".json") trt_params_file = trt_save_path.with_suffix(".pdiparams") if not trt_model_file.exists() or not trt_params_file.exists(): _convert_trt( self._option.trt_cfg_setting, model_file, params_file, trt_save_path, self._option.device_id, self._option.trt_dynamic_shapes, self._option.trt_dynamic_shape_input_data, ) else: logging.debug( f"Use TRT cache files(`{trt_model_file}` and `{trt_params_file}`)." ) config = paddle.inference.Config(str(trt_model_file), str(trt_params_file)) else: config = paddle.inference.Config(str(model_file), str(params_file)) config.set_optim_cache_dir(str(cache_dir / "optim_cache")) # call enable_use_gpu() first to use TensorRT engine config.enable_use_gpu(100, self._option.device_id) for func_name in self._option.trt_cfg_setting: assert hasattr( config, func_name ), f"The `{type(config)}` don't have function `{func_name}`!" args = self._option.trt_cfg_setting[func_name] if isinstance(args, list): getattr(config, func_name)(*args) else: getattr(config, func_name)(**args) if self._option.trt_use_dynamic_shapes: if self._option.trt_dynamic_shapes is None: raise RuntimeError("No dynamic shape information provided") if self._option.trt_collect_shape_range_info: # NOTE: We always use a shape range info file. if self._option.trt_shape_range_info_path is not None: trt_shape_range_info_path = Path( self._option.trt_shape_range_info_path ) else: trt_shape_range_info_path = cache_dir / "shape_range_info.pbtxt" should_collect_shape_range_info = True if not trt_shape_range_info_path.exists(): trt_shape_range_info_path.parent.mkdir( parents=True, exist_ok=True ) logging.info( f"Shape range info will be collected into {trt_shape_range_info_path}" ) elif self._option.trt_discard_cached_shape_range_info: trt_shape_range_info_path.unlink() logging.info( f"The shape range info file ({trt_shape_range_info_path}) has been removed, and the shape range info will be re-collected." ) else: logging.info( f"A shape range info file ({trt_shape_range_info_path}) already exists. There is no need to collect the info again." ) should_collect_shape_range_info = False if should_collect_shape_range_info: _collect_trt_shape_range_info( str(model_file), str(params_file), self._option.device_id, str(trt_shape_range_info_path), self._option.trt_dynamic_shapes, self._option.trt_dynamic_shape_input_data, ) if ( self._option.model_name in DISABLE_TRT_HALF_OPS_CONFIG and self._option.run_mode == "trt_fp16" ): paddle.inference.InternalUtils.disable_tensorrt_half_ops( config, DISABLE_TRT_HALF_OPS_CONFIG[self._option.model_name] ) config.enable_tuned_tensorrt_dynamic_shape( str(trt_shape_range_info_path), self._option.trt_allow_rebuild_at_runtime, ) else: min_shapes, opt_shapes, max_shapes = {}, {}, {} for ( key, shapes, ) in self._option.trt_dynamic_shapes.items(): min_shapes[key] = shapes[0] opt_shapes[key] = shapes[1] max_shapes[key] = shapes[2] config.set_trt_dynamic_shape_info( min_shapes, max_shapes, opt_shapes ) return config # FIXME: Name might be misleading @benchmark.timeit @class_requires_deps("ultra-infer") class MultiBackendInfer(object): def __init__(self, ui_runtime): super().__init__() self.ui_runtime = ui_runtime # The time consumed by the wrapper code will also be taken into account. def __call__(self, x): outputs = self.ui_runtime.infer(x) return outputs # TODO: It would be better to refactor the code to make `HPInfer` a higher-level # class that uses `PaddleInfer`. @class_requires_deps("ultra-infer") class HPInfer(StaticInfer): def __init__( self, model_dir: Union[str, PathLike], model_file_prefix: str, config: HPIConfig, ) -> None: super().__init__() self._model_dir = Path(model_dir) self._model_file_prefix = model_file_prefix self._config = config backend, backend_config = self._determine_backend_and_config() if backend == "paddle": self._use_paddle = True self._paddle_infer = self._build_paddle_infer(backend_config) else: self._use_paddle = False ui_runtime = self._build_ui_runtime(backend, backend_config) self._multi_backend_infer = MultiBackendInfer(ui_runtime) num_inputs = ui_runtime.num_inputs() self._input_names = [ ui_runtime.get_input_info(i).name for i in range(num_inputs) ] @property def model_dir(self) -> Path: return self._model_dir @property def model_file_prefix(self) -> str: return self._model_file_prefix @property def config(self) -> HPIConfig: return self._config def __call__(self, x: Sequence[np.ndarray]) -> List[np.ndarray]: if self._use_paddle: return self._call_paddle_infer(x) else: return self._call_multi_backend_infer(x) def _call_paddle_infer(self, x): return self._paddle_infer(x) def _call_multi_backend_infer(self, x): num_inputs = len(self._input_names) if len(x) != num_inputs: raise ValueError(f"Expected {num_inputs} inputs but got {len(x)} instead") x = _sort_inputs(x, self._input_names) inputs = {} for name, input_ in zip(self._input_names, x): inputs[name] = np.ascontiguousarray(input_) return self._multi_backend_infer(inputs) def _determine_backend_and_config(self): if self._config.auto_config: # Should we use the strategy pattern here to allow extensible # strategies? model_paths = get_model_paths(self._model_dir, self._model_file_prefix) ret = suggest_inference_backend_and_config( self._config, model_paths, ) if ret[0] is None: # Should I use a custom exception? raise RuntimeError( f"No inference backend and configuration could be suggested. Reason: {ret[1]}" ) backend, backend_config = ret else: backend = self._config.backend if backend is None: raise RuntimeError( "When automatic configuration is not used, the inference backend must be specified manually." ) backend_config = self._config.backend_config or {} if backend == "paddle" and not backend_config: logging.warning( "The Paddle Inference backend is selected with the default configuration. This may not provide optimal performance." ) return backend, backend_config def _build_paddle_infer(self, backend_config): kwargs = { "device_type": self._config.device_type, "device_id": self._config.device_id, **backend_config, } # TODO: This is probably redundant. Can we reuse the code in the # predictor class? paddle_info = None if self._config.hpi_info: hpi_info = self._config.hpi_info if hpi_info.backend_configs: paddle_info = hpi_info.backend_configs.paddle_infer if paddle_info is not None: if ( kwargs.get("trt_dynamic_shapes") is None and paddle_info.trt_dynamic_shapes is not None ): trt_dynamic_shapes = paddle_info.trt_dynamic_shapes logging.debug("TensorRT dynamic shapes set to %s", trt_dynamic_shapes) kwargs["trt_dynamic_shapes"] = trt_dynamic_shapes if ( kwargs.get("trt_dynamic_shape_input_data") is None and paddle_info.trt_dynamic_shape_input_data is not None ): trt_dynamic_shape_input_data = paddle_info.trt_dynamic_shape_input_data logging.debug( "TensorRT dynamic shape input data set to %s", trt_dynamic_shape_input_data, ) kwargs["trt_dynamic_shape_input_data"] = trt_dynamic_shape_input_data pp_option = PaddlePredictorOption(self._config.pdx_model_name, **kwargs) logging.info("Using Paddle Inference backend") logging.info("Paddle predictor option: %s", pp_option) return PaddleInfer(self._model_dir, self._model_file_prefix, option=pp_option) def _build_ui_runtime(self, backend, backend_config, ui_option=None): from ultra_infer import ModelFormat, Runtime, RuntimeOption if ui_option is None: ui_option = RuntimeOption() if self._config.device_type == "cpu": pass elif self._config.device_type == "gpu": ui_option.use_gpu(self._config.device_id or 0) elif self._config.device_type == "npu": ui_option.use_ascend(self._config.device_id or 0) else: raise RuntimeError( f"Unsupported device type {repr(self._config.device_type)}" ) model_paths = get_model_paths(self._model_dir, self.model_file_prefix) if backend in ("openvino", "onnxruntime", "tensorrt"): # XXX: This introduces side effects. if "onnx" not in model_paths: if self._config.auto_paddle2onnx: if "paddle" not in model_paths: raise RuntimeError("PaddlePaddle model required") # The CLI is used here since there is currently no API. logging.info( "Automatically converting PaddlePaddle model to ONNX format" ) try: subprocess.run( [ "paddlex", "--paddle2onnx", "--paddle_model_dir", str(self._model_dir), "--onnx_model_dir", str(self._model_dir), ], capture_output=True, check=True, text=True, ) except subprocess.CalledProcessError as e: raise RuntimeError( f"PaddlePaddle-to-ONNX conversion failed:\n{e.stderr}" ) from e model_paths = get_model_paths( self._model_dir, self.model_file_prefix ) assert "onnx" in model_paths else: raise RuntimeError("ONNX model required") ui_option.set_model_path(str(model_paths["onnx"]), "", ModelFormat.ONNX) elif backend == "om": if "om" not in model_paths: raise RuntimeError("OM model required") ui_option.set_model_path(str(model_paths["om"]), "", ModelFormat.OM) else: raise ValueError(f"Unsupported inference backend {repr(backend)}") if backend == "openvino": backend_config = OpenVINOConfig.model_validate(backend_config) ui_option.use_openvino_backend() ui_option.set_cpu_thread_num(backend_config.cpu_num_threads) elif backend == "onnxruntime": backend_config = ONNXRuntimeConfig.model_validate(backend_config) ui_option.use_ort_backend() ui_option.set_cpu_thread_num(backend_config.cpu_num_threads) elif backend == "tensorrt": if ( backend_config.get("use_dynamic_shapes", True) and backend_config.get("dynamic_shapes") is None ): trt_info = None if self._config.hpi_info: hpi_info = self._config.hpi_info if hpi_info.backend_configs: trt_info = hpi_info.backend_configs.tensorrt if trt_info is not None and trt_info.dynamic_shapes is not None: trt_dynamic_shapes = trt_info.dynamic_shapes logging.debug( "TensorRT dynamic shapes set to %s", trt_dynamic_shapes ) backend_config = { **backend_config, "dynamic_shapes": trt_dynamic_shapes, } backend_config = TensorRTConfig.model_validate(backend_config) ui_option.use_trt_backend() cache_dir = self._model_dir / CACHE_DIR / "tensorrt" cache_dir.mkdir(parents=True, exist_ok=True) ui_option.trt_option.serialize_file = str(cache_dir / "trt_serialized.trt") if backend_config.precision == "fp16": ui_option.trt_option.enable_fp16 = True if not backend_config.use_dynamic_shapes: raise RuntimeError( "TensorRT static shape inference is currently not supported" ) if backend_config.dynamic_shapes is not None: if not Path(ui_option.trt_option.serialize_file).exists(): for name, shapes in backend_config.dynamic_shapes.items(): ui_option.trt_option.set_shape(name, *shapes) else: logging.info( "TensorRT dynamic shapes will be loaded from the file." ) elif backend == "om": backend_config = OMConfig.model_validate(backend_config) ui_option.use_om_backend() else: raise ValueError(f"Unsupported inference backend {repr(backend)}") logging.info("Inference backend: %s", backend) logging.info("Inference backend config: %s", backend_config) ui_runtime = Runtime(ui_option) return ui_runtime