# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Final, List, Optional from pydantic import BaseModel from ..infra.models import DataInfo, PrimaryOperations from .shared import ocr __all__ = [ "INFER_ENDPOINT", "InferRequest", "DocPreprocessingResult", "InferResult", "PRIMARY_OPERATIONS", ] INFER_ENDPOINT: Final[str] = "/document-preprocessing" class InferRequest(ocr.BaseInferRequest): # Should it be "Classification" instead of "Classify"? Keep the names # consistent with the parameters of the wrapped function though. useDocOrientationClassify: Optional[bool] = None useDocUnwarping: Optional[bool] = None visualize: Optional[bool] = None class DocPreprocessingResult(BaseModel): outputImage: str prunedResult: dict docPreprocessingImage: Optional[str] = None inputImage: Optional[str] = None class InferResult(BaseModel): docPreprocessingResults: List[DocPreprocessingResult] dataInfo: DataInfo PRIMARY_OPERATIONS: Final[PrimaryOperations] = { "infer": (INFER_ENDPOINT, InferRequest, InferResult), }