# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .base import BaseRetriever import os from langchain.docstore.document import Document from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.embeddings import QianfanEmbeddingsEndpoint from langchain_community.vectorstores import FAISS from langchain_community import vectorstores from erniebot_agent.extensions.langchain.embeddings import ErnieEmbeddings import time class ErnieBotRetriever(BaseRetriever): """Ernie Bot Retriever""" entities = [ "ernie-4.0", "ernie-3.5", "ernie-3.5-8k", "ernie-lite", "ernie-tiny-8k", "ernie-speed", "ernie-speed-128k", "ernie-char-8k", ] def __init__(self, config): super().__init__() model_name = config.get("model_name", None) api_type = config.get("api_type", None) ak = config.get("ak", None) sk = config.get("sk", None) access_token = config.get("access_token", None) if model_name not in self.entities: raise ValueError(f"model_name must be in {self.entities} of ErnieBotChat.") if api_type not in ["aistudio", "qianfan"]: raise ValueError("api_type must be one of ['aistudio', 'qianfan']") if api_type == "aistudio" and access_token is None: raise ValueError("access_token cannot be empty when api_type is aistudio.") if api_type == "qianfan" and (ak is None or sk is None): raise ValueError("ak and sk cannot be empty when api_type is qianfan.") self.model_name = model_name self.config = config def generate_vector_database( self, text_list, block_size=300, separators=["\t", "\n", "。", "\n\n", ""], sleep_time=0.5, ): """ args: return: """ text_splitter = RecursiveCharacterTextSplitter( chunk_size=block_size, chunk_overlap=20, separators=separators ) texts = text_splitter.split_text("\t".join(text_list)) all_splits = [Document(page_content=text) for text in texts] api_type = self.config["api_type"] if api_type == "qianfan": os.environ["QIANFAN_AK"] = os.environ.get("EB_AK", self.config["ak"]) os.environ["QIANFAN_SK"] = os.environ.get("EB_SK", self.config["sk"]) user_ak = os.environ.get("EB_AK", self.config["ak"]) user_id = hash(user_ak) vectorstore = FAISS.from_documents( documents=all_splits, embedding=QianfanEmbeddingsEndpoint() ) elif api_type == "aistudio": token = self.config["access_token"] vectorstore = FAISS.from_documents( documents=all_splits[0:1], embedding=ErnieEmbeddings(aistudio_access_token=token), ) #### ErnieEmbeddings.chunk_size = 16 step = min(16, len(all_splits) - 1) for shot_splits in [ all_splits[i : i + step] for i in range(1, len(all_splits), step) ]: time.sleep(sleep_time) vectorstore_slice = FAISS.from_documents( documents=shot_splits, embedding=ErnieEmbeddings(aistudio_access_token=token), ) vectorstore.merge_from(vectorstore_slice) else: raise ValueError(f"Unsupported api_type: {api_type}") return vectorstore def encode_vector_store_to_bytes(self, vectorstore): vectorstore = self.encode_vector_store(vectorstore.serialize_to_bytes()) return vectorstore def decode_vector_store_from_bytes(self, vectorstore): if not self.is_vector_store(vectorstore): raise ValueError("The retrieved vectorstore is not for PaddleX.") api_type = self.config["api_type"] if api_type == "aistudio": access_token = self.config["access_token"] embeddings = ErnieEmbeddings(aistudio_access_token=access_token) elif api_type == "qianfan": ak = self.config["ak"] sk = self.config["sk"] embeddings = QianfanEmbeddingsEndpoint(qianfan_ak=ak, qianfan_sk=sk) else: raise ValueError(f"Unsupported api_type: {api_type}") vector = vectorstores.FAISS.deserialize_from_bytes( self.decode_vector_store(vectorstore), embeddings ) return vector def similarity_retrieval(self, query_text_list, vectorstore, sleep_time=0.5): # 根据提问匹配上下文 C = [] for query_text in query_text_list: QUESTION = query_text time.sleep(sleep_time) docs = vectorstore.similarity_search_with_relevance_scores(QUESTION, k=2) context = [(document.page_content, score) for document, score in docs] context = sorted(context, key=lambda x: x[1]) C.extend([x[0] for x in context[::-1]]) C = list(set(C)) all_C = " ".join(C) return all_C