# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import math import os.path as osp from collections import OrderedDict import numpy as np import paddle import paddle.nn.functional as F from paddle.static import InputSpec from paddlex.utils import logging, TrainingStats, DisablePrint from paddlex.cv.models.base import BaseModel from paddlex.cv.transforms import arrange_transforms from paddlex.cv.transforms.operators import Resize with DisablePrint(): from paddlex.ppcls.modeling import architectures from paddlex.ppcls.modeling.loss import CELoss __all__ = [ "ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152", "ResNet18_vd", "ResNet34_vd", "ResNet50_vd", "ResNet50_vd_ssld", "ResNet101_vd", "ResNet101_vd_ssld", "ResNet152_vd", "ResNet200_vd", "AlexNet", "DarkNet53", "MobileNetV1", "MobileNetV2", "MobileNetV3_small", "MobileNetV3_small_ssld", "MobileNetV3_large", "MobileNetV3_large_ssld", "DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201", "DenseNet264", "HRNet_W18_C", "HRNet_W30_C", "HRNet_W32_C", "HRNet_W40_C", "HRNet_W44_C", "HRNet_W48_C", "HRNet_W64_C", "Xception41", "Xception65", "Xception71", "ShuffleNetV2", "ShuffleNetV2_swish" ] class BaseClassifier(BaseModel): """Parent class of all classification models. Args: model_name (str, optional): Name of classification model. Defaults to 'ResNet50'. num_classes (int, optional): The number of target classes. Defaults to 1000. """ def __init__(self, model_name='ResNet50', num_classes=1000, **params): self.init_params = locals() self.init_params.update(params) if 'lr_mult_list' in self.init_params: del self.init_params['lr_mult_list'] if 'with_net' in self.init_params: del self.init_params['with_net'] super(BaseClassifier, self).__init__('classifier') if not hasattr(architectures, model_name): raise Exception("ERROR: There's no model named {}.".format( model_name)) self.model_name = model_name self.labels = None self.num_classes = num_classes for k, v in params.items(): setattr(self, k, v) if params.get('with_net', True): params.pop('with_net', None) self.net = self.build_net(**params) def build_net(self, **params): with paddle.utils.unique_name.guard(): net = architectures.__dict__[self.model_name]( class_dim=self.num_classes, **params) return net def _fix_transforms_shape(self, image_shape): if hasattr(self, 'test_transforms'): if self.test_transforms is not None: self.test_transforms.transforms.append( Resize(target_size=image_shape)) def _get_test_inputs(self, image_shape): if image_shape is not None: if len(image_shape) == 2: image_shape = [1, 3] + image_shape self._fix_transforms_shape(image_shape[-2:]) else: image_shape = [None, 3, -1, -1] self.fixed_input_shape = image_shape input_spec = [ InputSpec( shape=image_shape, name='image', dtype='float32') ] return input_spec def run(self, net, inputs, mode): net_out = net(inputs[0]) softmax_out = F.softmax(net_out) if mode == 'test': outputs = OrderedDict([('prediction', softmax_out)]) elif mode == 'eval': pred = softmax_out gt = inputs[1] labels = inputs[1].reshape([-1, 1]) acc1 = paddle.metric.accuracy(softmax_out, label=labels) k = min(5, self.num_classes) acck = paddle.metric.accuracy(softmax_out, label=labels, k=k) # multi cards eval if paddle.distributed.get_world_size() > 1: acc1 = paddle.distributed.all_reduce( acc1, op=paddle.distributed.ReduceOp. SUM) / paddle.distributed.get_world_size() acck = paddle.distributed.all_reduce( acck, op=paddle.distributed.ReduceOp. SUM) / paddle.distributed.get_world_size() pred = list() gt = list() paddle.distributed.all_gather(pred, softmax_out) paddle.distributed.all_gather(gt, inputs[1]) pred = paddle.concat(pred, axis=0) gt = paddle.concat(gt, axis=0) outputs = OrderedDict([('acc1', acc1), ('acc{}'.format(k), acck), ('prediction', pred), ('labels', gt)]) else: # mode == 'train' labels = inputs[1].reshape([-1, 1]) loss = CELoss(class_dim=self.num_classes) loss = loss(net_out, inputs[1]) acc1 = paddle.metric.accuracy(softmax_out, label=labels, k=1) k = min(5, self.num_classes) acck = paddle.metric.accuracy(softmax_out, label=labels, k=k) outputs = OrderedDict([('loss', loss), ('acc1', acc1), ('acc{}'.format(k), acck)]) return outputs def default_optimizer(self, parameters, learning_rate, warmup_steps, warmup_start_lr, lr_decay_epochs, lr_decay_gamma, num_steps_each_epoch): boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs] values = [ learning_rate * (lr_decay_gamma**i) for i in range(len(lr_decay_epochs) + 1) ] scheduler = paddle.optimizer.lr.PiecewiseDecay(boundaries, values) if warmup_steps > 0: if warmup_steps > lr_decay_epochs[0] * num_steps_each_epoch: logging.error( "In function train(), parameters should satisfy: " "warmup_steps <= lr_decay_epochs[0]*num_samples_in_train_dataset", exit=False) logging.error( "See this doc for more information: " "https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/appendix/parameters.md#notice", exit=False) logging.error( "warmup_steps should less than {} or lr_decay_epochs[0] greater than {}, " "please modify 'lr_decay_epochs' or 'warmup_steps' in train function". format(lr_decay_epochs[0] * num_steps_each_epoch, warmup_steps // num_steps_each_epoch)) scheduler = paddle.optimizer.lr.LinearWarmup( learning_rate=scheduler, warmup_steps=warmup_steps, start_lr=warmup_start_lr, end_lr=learning_rate) optimizer = paddle.optimizer.Momentum( scheduler, momentum=.9, weight_decay=paddle.regularizer.L2Decay(coeff=1e-04), parameters=parameters) return optimizer def train(self, num_epochs, train_dataset, train_batch_size=64, eval_dataset=None, optimizer=None, save_interval_epochs=1, log_interval_steps=10, save_dir='output', pretrain_weights='IMAGENET', learning_rate=.025, warmup_steps=0, warmup_start_lr=0.0, lr_decay_epochs=(30, 60, 90), lr_decay_gamma=0.1, early_stop=False, early_stop_patience=5, use_vdl=True, resume_checkpoint=None): """ Train the model. Args: num_epochs(int): The number of epochs. train_dataset(paddlex.dataset): Training dataset. train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64. eval_dataset(paddlex.dataset, optional): Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None. optimizer(paddle.optimizer.Optimizer or None, optional): Optimizer used for training. If None, a default optimizer is used. Defaults to None. save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1. log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10. save_dir(str, optional): Directory to save the model. Defaults to 'output'. pretrain_weights(str or None, optional): None or name/path of pretrained weights. If None, no pretrained weights will be loaded. At most one of `resume_checkpoint` and `pretrain_weights` can be set simultaneously. Defaults to 'IMAGENET'. learning_rate(float, optional): Learning rate for training. Defaults to .025. warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0. warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0.. lr_decay_epochs(List[int] or Tuple[int], optional): Epoch milestones for learning rate decay. Defaults to (20, 60, 90). lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay, default .1. early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False. early_stop_patience(int, optional): Early stop patience. Defaults to 5. use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True. resume_checkpoint(str or None, optional): The path of the checkpoint to resume training from. If None, no training checkpoint will be resumed. At most one of `resume_checkpoint` and `pretrain_weights` can be set simultaneously. Defaults to None. """ if pretrain_weights is not None and resume_checkpoint is not None: logging.error( "pretrain_weights and resume_checkpoint cannot be set simultaneously.", exit=True) self.labels = train_dataset.labels # build optimizer if not defined if optimizer is None: num_steps_each_epoch = len(train_dataset) // train_batch_size self.optimizer = self.default_optimizer( parameters=self.net.parameters(), learning_rate=learning_rate, warmup_steps=warmup_steps, warmup_start_lr=warmup_start_lr, lr_decay_epochs=lr_decay_epochs, lr_decay_gamma=lr_decay_gamma, num_steps_each_epoch=num_steps_each_epoch) else: self.optimizer = optimizer # initiate weights if pretrain_weights is not None and not osp.exists(pretrain_weights): if pretrain_weights not in ['IMAGENET']: logging.warning( "Path of pretrain_weights('{}') does not exist!".format( pretrain_weights)) logging.warning( "Pretrain_weights is forcibly set to 'IMAGENET'. " "If don't want to use pretrain weights, " "set pretrain_weights to be None.") pretrain_weights = 'IMAGENET' elif pretrain_weights is not None and osp.exists(pretrain_weights): if osp.splitext(pretrain_weights)[-1] != '.pdparams': logging.error( "Invalid pretrain weights. Please specify a '.pdparams' file.", exit=True) pretrained_dir = osp.join(save_dir, 'pretrain') self.net_initialize( pretrain_weights=pretrain_weights, save_dir=pretrained_dir, resume_checkpoint=resume_checkpoint) # start train loop self.train_loop( num_epochs=num_epochs, train_dataset=train_dataset, train_batch_size=train_batch_size, eval_dataset=eval_dataset, save_interval_epochs=save_interval_epochs, log_interval_steps=log_interval_steps, save_dir=save_dir, early_stop=early_stop, early_stop_patience=early_stop_patience, use_vdl=use_vdl) def quant_aware_train(self, num_epochs, train_dataset, train_batch_size=64, eval_dataset=None, optimizer=None, save_interval_epochs=1, log_interval_steps=10, save_dir='output', learning_rate=.000025, warmup_steps=0, warmup_start_lr=0.0, lr_decay_epochs=(30, 60, 90), lr_decay_gamma=0.1, early_stop=False, early_stop_patience=5, use_vdl=True, resume_checkpoint=None, quant_config=None): """ Quantization-aware training. Args: num_epochs(int): The number of epochs. train_dataset(paddlex.dataset): Training dataset. train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64. eval_dataset(paddlex.dataset, optional): Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None. optimizer(paddle.optimizer.Optimizer or None, optional): Optimizer used for training. If None, a default optimizer is used. Defaults to None. save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1. log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10. save_dir(str, optional): Directory to save the model. Defaults to 'output'. learning_rate(float, optional): Learning rate for training. Defaults to .025. warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0. warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0.. lr_decay_epochs(List[int] or Tuple[int], optional): Epoch milestones for learning rate decay. Defaults to (20, 60, 90). lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay, default .1. early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False. early_stop_patience(int, optional): Early stop patience. Defaults to 5. use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True. quant_config(dict or None, optional): Quantization configuration. If None, a default rule of thumb configuration will be used. Defaults to None. resume_checkpoint(str or None, optional): The path of the checkpoint to resume quantization-aware training from. If None, no training checkpoint will be resumed. Defaults to None. """ self._prepare_qat(quant_config) self.train( num_epochs=num_epochs, train_dataset=train_dataset, train_batch_size=train_batch_size, eval_dataset=eval_dataset, optimizer=optimizer, save_interval_epochs=save_interval_epochs, log_interval_steps=log_interval_steps, save_dir=save_dir, pretrain_weights=None, learning_rate=learning_rate, warmup_steps=warmup_steps, warmup_start_lr=warmup_start_lr, lr_decay_epochs=lr_decay_epochs, lr_decay_gamma=lr_decay_gamma, early_stop=early_stop, early_stop_patience=early_stop_patience, use_vdl=use_vdl, resume_checkpoint=resume_checkpoint) def evaluate(self, eval_dataset, batch_size=1, return_details=False): """ Evaluate the model. Args: eval_dataset(paddlex.dataset): Evaluation dataset. batch_size(int, optional): Total batch size among all cards used for evaluation. Defaults to 1. return_details(bool, optional): Whether to return evaluation details. Defaults to False. Returns: collections.OrderedDict with key-value pairs: {"acc1": `top 1 accuracy`, "acc5": `top 5 accuracy`}. """ # 给transform添加arrange操作 arrange_transforms( model_type=self.model_type, transforms=eval_dataset.transforms, mode='eval') self.net.eval() nranks = paddle.distributed.get_world_size() local_rank = paddle.distributed.get_rank() if nranks > 1: # Initialize parallel environment if not done. if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized( ): paddle.distributed.init_parallel_env() self.eval_data_loader = self.build_data_loader( eval_dataset, batch_size=batch_size, mode='eval') eval_metrics = TrainingStats() if return_details: true_labels = list() pred_scores = list() logging.info( "Start to evaluate(total_samples={}, total_steps={})...".format( eval_dataset.num_samples, math.ceil(eval_dataset.num_samples * 1.0 / batch_size))) with paddle.no_grad(): for step, data in enumerate(self.eval_data_loader()): outputs = self.run(self.net, data, mode='eval') if return_details: true_labels.extend(outputs['labels'].tolist()) pred_scores.extend(outputs['prediction'].tolist()) outputs.pop('prediction') outputs.pop('labels') eval_metrics.update(outputs) if return_details: eval_details = { 'true_labels': true_labels, 'pred_scores': pred_scores } return eval_metrics.get(), eval_details else: return eval_metrics.get() def predict(self, img_file, transforms=None, topk=1): """ Do inference. Args: img_file(List[np.ndarray or str], str or np.ndarray): Image path or decoded image data in a BGR format, which also could constitute a list, meaning all images to be predicted as a mini-batch. transforms(paddlex.transforms.Compose or None, optional): Transforms for inputs. If None, the transforms for evaluation process will be used. Defaults to None. topk(int, optional): Keep topk results in prediction. Defaults to 1. Returns: If img_file is a string or np.array, the result is a dict with key-value pairs: {"category_id": `category_id`, "category": `category`, "score": `score`}. If img_file is a list, the result is a list composed of dicts with the corresponding fields: category_id(int): the predicted category ID category(str): category name score(float): confidence """ if transforms is None and not hasattr(self, 'test_transforms'): raise Exception("transforms need to be defined, now is None.") if transforms is None: transforms = self.test_transforms true_topk = min(self.num_classes, topk) if isinstance(img_file, (str, np.ndarray)): images = [img_file] else: images = img_file im = self._preprocess(images, transforms) self.net.eval() with paddle.no_grad(): outputs = self.run(self.net, im, mode='test') prediction = outputs['prediction'].numpy() prediction = self._postprocess(prediction, true_topk, self.labels) if isinstance(img_file, (str, np.ndarray)): prediction = prediction[0] return prediction def _preprocess(self, images, transforms, to_tensor=True): arrange_transforms( model_type=self.model_type, transforms=transforms, mode='test') batch_im = list() for im in images: sample = {'image': im} batch_im.append(transforms(sample)) if to_tensor: batch_im = paddle.to_tensor(batch_im) return batch_im, def _postprocess(self, results, true_topk, labels): preds = list() for i, pred in enumerate(results): pred_label = np.argsort(pred)[::-1][:true_topk] preds.append([{ 'category_id': l, 'category': labels[l], 'score': results[i][l] } for l in pred_label]) return preds class ResNet18(BaseClassifier): def __init__(self, num_classes=1000, **params): super(ResNet18, self).__init__( model_name='ResNet18', num_classes=num_classes, **params) class ResNet34(BaseClassifier): def __init__(self, num_classes=1000, **params): super(ResNet34, self).__init__( model_name='ResNet34', num_classes=num_classes, **params) class ResNet50(BaseClassifier): def __init__(self, num_classes=1000, **params): super(ResNet50, self).__init__( model_name='ResNet50', num_classes=num_classes, **params) class ResNet101(BaseClassifier): def __init__(self, num_classes=1000, **params): super(ResNet101, self).__init__( model_name='ResNet101', num_classes=num_classes, **params) class ResNet152(BaseClassifier): def __init__(self, num_classes=1000, **params): super(ResNet152, self).__init__( model_name='ResNet152', num_classes=num_classes, **params) class ResNet18_vd(BaseClassifier): def __init__(self, num_classes=1000, **params): super(ResNet18_vd, self).__init__( model_name='ResNet18_vd', num_classes=num_classes, **params) class ResNet34_vd(BaseClassifier): def __init__(self, num_classes=1000, **params): super(ResNet34_vd, self).__init__( model_name='ResNet34_vd', num_classes=num_classes, **params) class ResNet50_vd(BaseClassifier): def __init__(self, num_classes=1000, **params): super(ResNet50_vd, self).__init__( model_name='ResNet50_vd', num_classes=num_classes, **params) class ResNet50_vd_ssld(BaseClassifier): def __init__(self, num_classes=1000, **params): super(ResNet50_vd_ssld, self).__init__( model_name='ResNet50_vd', num_classes=num_classes, lr_mult_list=[.1, .1, .2, .2, .3], **params) self.model_name = 'ResNet50_vd_ssld' class ResNet101_vd(BaseClassifier): def __init__(self, num_classes=1000, **params): super(ResNet101_vd, self).__init__( model_name='ResNet101_vd', num_classes=num_classes, **params) class ResNet101_vd_ssld(BaseClassifier): def __init__(self, num_classes=1000, **params): super(ResNet101_vd_ssld, self).__init__( model_name='ResNet101_vd', num_classes=num_classes, lr_mult_list=[.1, .1, .2, .2, .3], **params) self.model_name = 'ResNet101_vd_ssld' class ResNet152_vd(BaseClassifier): def __init__(self, num_classes=1000, **params): super(ResNet152_vd, self).__init__( model_name='ResNet152_vd', num_classes=num_classes, **params) class ResNet200_vd(BaseClassifier): def __init__(self, num_classes=1000, **params): super(ResNet200_vd, self).__init__( model_name='ResNet200_vd', num_classes=num_classes, **params) class AlexNet(BaseClassifier): def __init__(self, num_classes=1000, **params): super(AlexNet, self).__init__( model_name='AlexNet', num_classes=num_classes, **params) def _get_test_inputs(self, image_shape): if image_shape is not None: if len(image_shape) == 2: image_shape = [None, 3] + image_shape else: image_shape = [None, 3, 224, 224] logging.warning( '[Important!!!] When exporting inference model for {},'.format( self.__class__.__name__) + ' if fixed_input_shape is not set, it will be forcibly set to [None, 3, 224, 224]' + 'Please check image shape after transforms is [3, 224, 224], if not, fixed_input_shape ' + 'should be specified manually.') self._fix_transforms_shape(image_shape[-2:]) self.fixed_input_shape = image_shape input_spec = [ InputSpec( shape=image_shape, name='image', dtype='float32') ] return input_spec class DarkNet53(BaseClassifier): def __init__(self, num_classes=1000, **params): super(DarkNet53, self).__init__( model_name='DarkNet53', num_classes=num_classes, **params) class MobileNetV1(BaseClassifier): def __init__(self, num_classes=1000, scale=1.0, **params): supported_scale = [.25, .5, .75, 1.0] if scale not in supported_scale: logging.warning("scale={} is not supported by MobileNetV1, " "scale is forcibly set to 1.0".format(scale)) scale = 1.0 if scale == 1: model_name = 'MobileNetV1' else: model_name = 'MobileNetV1_x' + str(scale).replace('.', '_') self.scale = scale super(MobileNetV1, self).__init__( model_name=model_name, num_classes=num_classes, **params) class MobileNetV2(BaseClassifier): def __init__(self, num_classes=1000, scale=1.0, **params): supported_scale = [.25, .5, .75, 1.0, 1.5, 2.0] if scale not in supported_scale: logging.warning("scale={} is not supported by MobileNetV2, " "scale is forcibly set to 1.0".format(scale)) scale = 1.0 if scale == 1: model_name = 'MobileNetV2' else: model_name = 'MobileNetV2_x' + str(scale).replace('.', '_') super(MobileNetV2, self).__init__( model_name=model_name, num_classes=num_classes, **params) class MobileNetV3_small(BaseClassifier): def __init__(self, num_classes=1000, scale=1.0, **params): supported_scale = [.35, .5, .75, 1.0, 1.25] if scale not in supported_scale: logging.warning("scale={} is not supported by MobileNetV3_small, " "scale is forcibly set to 1.0".format(scale)) scale = 1.0 model_name = 'MobileNetV3_small_x' + str(float(scale)).replace('.', '_') super(MobileNetV3_small, self).__init__( model_name=model_name, num_classes=num_classes, **params) class MobileNetV3_small_ssld(BaseClassifier): def __init__(self, num_classes=1000, scale=1.0, **params): supported_scale = [.35, 1.0] if scale not in supported_scale: logging.warning( "scale={} is not supported by MobileNetV3_small_ssld, " "scale is forcibly set to 1.0".format(scale)) scale = 1.0 model_name = 'MobileNetV3_small_x' + str(float(scale)).replace('.', '_') super(MobileNetV3_small_ssld, self).__init__( model_name=model_name, num_classes=num_classes, **params) self.model_name = model_name + '_ssld' class MobileNetV3_large(BaseClassifier): def __init__(self, num_classes=1000, scale=1.0, **params): supported_scale = [.35, .5, .75, 1.0, 1.25] if scale not in supported_scale: logging.warning("scale={} is not supported by MobileNetV3_large, " "scale is forcibly set to 1.0".format(scale)) scale = 1.0 model_name = 'MobileNetV3_large_x' + str(float(scale)).replace('.', '_') super(MobileNetV3_large, self).__init__( model_name=model_name, num_classes=num_classes, **params) class MobileNetV3_large_ssld(BaseClassifier): def __init__(self, num_classes=1000, **params): super(MobileNetV3_large_ssld, self).__init__( model_name='MobileNetV3_large_x1_0', num_classes=num_classes, **params) self.model_name = 'MobileNetV3_large_x1_0_ssld' class DenseNet121(BaseClassifier): def __init__(self, num_classes=1000, **params): super(DenseNet121, self).__init__( model_name='DenseNet121', num_classes=num_classes, **params) class DenseNet161(BaseClassifier): def __init__(self, num_classes=1000, **params): super(DenseNet161, self).__init__( model_name='DenseNet161', num_classes=num_classes, **params) class DenseNet169(BaseClassifier): def __init__(self, num_classes=1000, **params): super(DenseNet169, self).__init__( model_name='DenseNet169', num_classes=num_classes, **params) class DenseNet201(BaseClassifier): def __init__(self, num_classes=1000, **params): super(DenseNet201, self).__init__( model_name='DenseNet201', num_classes=num_classes, **params) class DenseNet264(BaseClassifier): def __init__(self, num_classes=1000, **params): super(DenseNet264, self).__init__( model_name='DenseNet264', num_classes=num_classes, **params) class HRNet_W18_C(BaseClassifier): def __init__(self, num_classes=1000, **params): super(HRNet_W18_C, self).__init__( model_name='HRNet_W18_C', num_classes=num_classes, **params) class HRNet_W30_C(BaseClassifier): def __init__(self, num_classes=1000, **params): super(HRNet_W30_C, self).__init__( model_name='HRNet_W30_C', num_classes=num_classes, **params) class HRNet_W32_C(BaseClassifier): def __init__(self, num_classes=1000, **params): super(HRNet_W32_C, self).__init__( model_name='HRNet_W32_C', num_classes=num_classes, **params) class HRNet_W40_C(BaseClassifier): def __init__(self, num_classes=1000, **params): super(HRNet_W40_C, self).__init__( model_name='HRNet_W40_C', num_classes=num_classes, **params) class HRNet_W44_C(BaseClassifier): def __init__(self, num_classes=1000, **params): super(HRNet_W44_C, self).__init__( model_name='HRNet_W44_C', num_classes=num_classes, **params) class HRNet_W48_C(BaseClassifier): def __init__(self, num_classes=1000, **params): super(HRNet_W48_C, self).__init__( model_name='HRNet_W48_C', num_classes=num_classes, **params) class HRNet_W64_C(BaseClassifier): def __init__(self, num_classes=1000, **params): super(HRNet_W64_C, self).__init__( model_name='HRNet_W64_C', num_classes=num_classes, **params) class Xception41(BaseClassifier): def __init__(self, num_classes=1000, **params): super(Xception41, self).__init__( model_name='Xception41', num_classes=num_classes, **params) class Xception65(BaseClassifier): def __init__(self, num_classes=1000, **params): super(Xception65, self).__init__( model_name='Xception65', num_classes=num_classes, **params) class Xception71(BaseClassifier): def __init__(self, num_classes=1000, **params): super(Xception71, self).__init__( model_name='Xception71', num_classes=num_classes, **params) class ShuffleNetV2(BaseClassifier): def __init__(self, num_classes=1000, scale=1.0, **params): supported_scale = [.25, .33, .5, 1.0, 1.5, 2.0] if scale not in supported_scale: logging.warning("scale={} is not supported by ShuffleNetV2, " "scale is forcibly set to 1.0".format(scale)) scale = 1.0 model_name = 'ShuffleNetV2_x' + str(float(scale)).replace('.', '_') super(ShuffleNetV2, self).__init__( model_name=model_name, num_classes=num_classes, **params) def _get_test_inputs(self, image_shape): if image_shape is not None: if len(image_shape) == 2: image_shape = [None, 3] + image_shape else: image_shape = [None, 3, 224, 224] logging.warning( '[Important!!!] When exporting inference model for {},'.format( self.__class__.__name__) + ' if fixed_input_shape is not set, it will be forcibly set to [None, 3, 224, 224]' + 'Please check image shape after transforms is [3, 224, 224], if not, fixed_input_shape ' + 'should be specified manually.') self._fix_transforms_shape(image_shape[-2:]) self.fixed_input_shape = image_shape input_spec = [ InputSpec( shape=image_shape, name='image', dtype='float32') ] return input_spec class ShuffleNetV2_swish(BaseClassifier): def __init__(self, num_classes=1000, **params): super(ShuffleNetV2_swish, self).__init__( model_name='ShuffleNetV2_x1_5', num_classes=num_classes, **params) def _get_test_inputs(self, image_shape): if image_shape is not None: if len(image_shape) == 2: image_shape = [None, 3] + image_shape else: image_shape = [None, 3, 224, 224] logging.warning( '[Important!!!] When exporting inference model for {},'.format( self.__class__.__name__) + ' if fixed_input_shape is not set, it will be forcibly set to [None, 3, 224, 224]' + 'Please check image shape after transforms is [3, 224, 224], if not, fixed_input_shape ' + 'should be specified manually.') self._fix_transforms_shape(image_shape[-2:]) self.fixed_input_shape = image_shape input_spec = [ InputSpec( shape=image_shape, name='image', dtype='float32') ] return input_spec